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12Language models for
information retrieval

A common suggestion to users for coming up with good queries is to think
of words that would likely appear in a relevant document, and to use those
words as the query. The language modeling approach to information re-
trieval (IR) directly models that idea: A document is a good match to a query
if the document model is likely to generate the query, which will in turn
happen if the document contains the query words often. This approach thus
provides a different realization of some of the basic ideas for document rank-
ing which we saw in Section 6.2 (page 107). Instead of overtly modeling the
probability P(R = 1|q , d) of relevance of a document d to a query q , as in the
traditional probabilistic approach to IR (Chapter 11), the basic language mod-
eling approach instead builds a probabilistic language model Md from each
document d, and ranks documents based on the probability of the model
generating the query: P(q |Md ).

In this chapter, we first introduce the concept of language models (Sec-
tion 12.1) and then describe the basic and most commonly used language
modeling approach to IR, the query likelihood model (Section 12.2). After
some comparisons between the language modeling approach and other ap-
proaches to IR (Section 12.3), we finish by briefly describing various exten-
sions to the language modeling approach (Section 12.4).

12.1 Language models

12.1.1 Finite automata and language models

What do we mean by a document model generating a query? A traditional
generative model of a language, of the kind familiar from formal languagegenerative

model theory, can be used either to recognize or to generate strings. For example,
the finite automaton shown in Figure 12.1 can generate strings that include
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I wish

I wish
I wish I wish
I wish I wish I wish
I wish I wish I wish I wish I wish I wish
. . .

Cannot generate: wish I wish

Figure 12.1 A simple finite automaton and some of the strings in the language it generates. →
shows the start state of the automaton and a double circle indicates a (possible) finishing state.

the examples shown. The full set of strings that can be generated is called the
language of the automaton.1language

If instead each node has a probability distribution over generating differ-
ent terms, we have a language model. The notion of a language model is
inherently probabilistic. A language model is a function that puts a probabilitylanguage

model measure over strings drawn from some vocabulary. That is, for a language
model M over an alphabet �: ∑

s∈�∗
P(s) = 1.(12.1)

One simple kind of language model is equivalent to a probabilistic finite au-
tomaton consisting of just a single node with a single probability distribu-
tion over producing different terms, so that

∑
t∈V P(t) = 1, as shown in Fig-

ure 12.2. After generating each word, we decide whether to stop or to loop
around and then produce another word, and so the model also requires a
probability of stopping in the finishing state. Such a model places a probabil-
ity distribution over any sequence of words. By construction, it also provides
a model for generating text according to its distribution.

✎ Example 12.1: To find the probability of a word sequence, we just mul-
tiply the probabilities that the model gives to each word in the sequence,
together with the probability of continuing or stopping after producing
each word. For example,

P(frog said that toad likes frog) = (0.01 × 0.03 × 0.04 × 0.01 × 0.02 × 0.01)(12.2)

×(0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.2)

≈ 0.000000000001573

As you can see, the probability of a particular string/document is usually a
very small number! Here we stopped after generating frog the second time.
The first line of numbers are the term emission probabilities, and the sec-
ond line gives the probability of continuing or stopping after generating
each word. An explicit stop probability is needed for a finite automaton

1 Finite automata can have outputs attached to either their states or their arcs; we use states
here, because that maps directly on to the way probabilistic automata are usually formalized.
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q1

P(stop|q1) = 0.2

the 0.2
a 0.1
frog 0.01
toad 0.01
said 0.03
likes 0.02
that 0.04
. . . . . .

Figure 12.2 A one-state finite automaton that acts as a unigram language model. We show a
partial specification of the state emission probabilities.

to be a well-formed language model according to Equation (12.1). Nev-
ertheless, most of the time, we will omit to include stop and (1 − stop)
probabilities (as do most other authors). To compare two models for a
data set, we can calculate their likelihood ratio, which results from simplylikelihood

ratio dividing the probability of the data according to one model by the prob-
ability of the data according to the other model. Providing that the stop
probability is fixed, its inclusion will not alter the likelihood ratio that re-
sults from comparing the likelihood of two language models generating
a string. Hence, it will not alter the ranking of documents.2 Nevertheless,
formally, the numbers will no longer truly be probabilities, but only pro-
portional to probabilities. See Exercise 12.4.

✎ Example 12.2: Suppose, now, that we have two language models M1 and
M2, shown partially in Figure 12.3. Each gives a probability estimate to a
sequence of terms, as already illustrated in Example 12.1. The language
model that gives the higher probability to the sequence of terms is more
likely to have generated the term sequence. This time, we will omit stop
probabilities from our calculations. For the sequence shown, we get:

(12.3) s frog said that toad likes that dog
M1 0.01 0.03 0.04 0.01 0.02 0.04 0.005
M2 0.0002 0.03 0.04 0.0001 0.04 0.04 0.01

P(s|M1) = 0.00000000000048
P(s|M2) = 0.000000000000000384

and we see that P(s|M1) > P(s|M2). We present the formulas here in terms
of products of probabilities, but, as is common in probabilistic applica-
tions, in practice it is usually best to work with sums of log probabilities
(cf. page 239).

2 In the IR context that we are leading up to, taking the stop probability to be fixed across
models seems reasonable. This is because we are generating queries, and the length distribu-
tion of queries is fixed and independent of the document from which we are generating the
language model.
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model M1 model M2

the 0.2 the 0.15
a 0.1 a 0.12
frog 0.01 frog 0.0002
toad 0.01 toad 0.0001
said 0.03 said 0.03
likes 0.02 likes 0.04
that 0.04 that 0.04
dog 0.005 dog 0.01
cat 0.003 cat 0.015
monkey 0.001 monkey 0.002
. . . . . . . . . . . .

Figure 12.3 Partial specification of two unigram language models.

12.1.2 Types of language models

How do we build probabilities over sequences of terms? We can always use
the chain rule from Equation (11.1) to decompose the probability of a se-
quence of events into the probability of each successive event conditioned
on earlier events:

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t1t2)P(t4|t1t2t3).(12.4)

The simplest form of language model simply throws away all conditioning
context, and estimates each term independently. Such a model is called a
unigram language model:

unigram
language

model

Puni(t1t2t3t4) = P(t1)P(t2)P(t3)P(t4).(12.5)

There are many more complex kinds of language models, such as bigram lan-bigram
language

model
guage models, which condition on the previous term,

Pbi(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t2)P(t4|t3)(12.6)

and even more complex grammar-based language models such as proba-
bilistic context-free grammars. Such models are vital for tasks like speech
recognition, spelling correction, and machine translation, where you need
the probability of a term conditioned on surrounding context. However, most
language-modeling work in IR has used unigram language models. IR is
not the place where you most immediately need complex language mod-
els, because IR does not directly depend on the structure of sentences to
the extent that other tasks like speech recognition do. Unigram models are
often sufficient to judge the topic of a text. Moreover, as we shall see, IR lan-
guage models are frequently estimated from a single document and so it is
questionable whether there is enough training data to do more. Losses from
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data sparseness (see the discussion on page 240) tend to outweigh any gains
from richer models. This is an example of the bias-variance tradeoff (cf. Sec-
tion 14.6, page 284): With limited training data, a more constrained model
tends to perform better. In addition, unigram models are more efficient to
estimate and apply than higher order models. Nevertheless, the importance
of phrase and proximity queries in IR in general suggests that future work
should make use of more sophisticated language models, and some has be-
gun to (see Section 12.5, page 232). Indeed, making this move parallels the
model of van Rijsbergen in Chapter 11 (page 213).

12.1.3 Multinomial distributions over words

Under the unigram language model the order of words is irrelevant, and so
such models are often called bag-of-words models, as discussed in Chap-
ter 6 (page 107). Even though there is no conditioning on preceding context,
this model nevertheless still gives the probability of a particular ordering of
terms. However, any other ordering of this bag of terms will have the same
probability. So, really, we have a multinomial distribution over words. So
long as we stick to unigram models, the language model name and motiva-
tion could be viewed as historical rather than necessary. We could instead
just refer to the model as a multinomial model. From this perspective, the
equations presented above do not present the multinomial probability of a
bag of words, because they do not sum over all possible orderings of those
words, as is done by the multinomial coefficient (the first term on the right-
hand side) in the standard presentation of a multinomial model:

P(d) = Ld !
tft1,d !tft2,d ! · · · tftM,d !

P(t1)tft1 ,d P(t2)tft2 ,d · · · P(tM)tftM,d .(12.7)

Here, Ld = ∑
1≤i≤M tfti ,d is the length of document d, M is the size of the term

vocabulary, and the products are now over the terms in the vocabulary, not
the positions in the document. However, just as with stop probabilities, in
practice we can also leave out the multinomial coefficient in our calculations;
for a particular bag of words, it will be a constant, and so it has no effect on
the likelihood ratio of two different models generating a particular bag of
words. Multinomial distributions also appear in Section 13.2 (page 238).

The fundamental problem in designing language models is that we do not
know what exactly we should use as the model Md . However, we do gener-
ally have a sample of text that is representative of that model. This problem
makes a lot of sense in the original, primary uses of language models. For ex-
ample, in speech recognition, we have a training sample of (spoken) text. But
we have to expect that, in the future, users will use different words and in
different sequences, which we have never observed before, and so the model
has to generalize beyond the observed data to allow unknown words and
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sequences. This interpretation is not so clear in the IR case, where a docu-
ment is finite and usually fixed. The strategy we adopt in IR is as follows. We
pretend that the document d is only a representative sample of text drawn
from a model distribution, treating it like a fine-grained topic. We then esti-
mate a language model from this sample, and use that model to calculate the
probability of observing any word sequence, and, finally, we rank documents
according to their probability of generating the query.

? Exercise 12.1 [	] Including stop probabilities in the calculation, what will the
sum of the probability estimates of all strings in the language of length 1
be? Assume that you generate a word and then decide whether to stop or
not (i.e., the null string is not part of the language).

Exercise 12.2 [	] If the stop probability is omitted from calculations, what
will the sum of the scores assigned to strings in the language of length 1
be?

Exercise 12.3 [	] What is the likelihood ratio of the document according to
M1 and M2 in Example 12.2?

Exercise 12.4 [	] No explicit stop probability appeared in Example 12.2. As-
suming that the stop probability of each model is 0.1, does this change the
likelihood ratio of a document according to the two models?

Exercise 12.5 [		] How might a language model be used in a spelling correc-
tion system? In particular, consider the case of context-sensitive spelling
correction, and correcting incorrect usages of words, such as their in Are
you their? (See Section 3.5 (page 59) for pointers to some literature on this
topic.)

12.2 The query likelihood model

12.2.1 Using query likelihood language models in IR

Language modeling is a quite general formal approach to IR, with many vari-
ant realizations. The original and basic method for using language models
in IR is the query likelihood model. In it, we construct from each document dquery

likelihood
model

in the collection a language model Md . Our goal is to rank documents by
P(d|q ), where the probability of a document is interpreted as the likelihood
that it is relevant to the query. Using Bayes rule (as introduced in Section 11.1,
page 202), we have:

P(d|q ) = P(q |d)P(d)/P(q ).

P(q ) is the same for all documents, and so can be ignored. The prior prob-
ability of a document P(d) is often treated as uniform across all d and so it
can also be ignored, but we could implement a genuine prior, which could
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include criteria like authority, length, genre, newness, and number of previ-
ous people who have read the document. But, given these simplifications, we
return results ranked by simply P(q |d), the probability of the query q under
the language model derived from d. The language modeling approach thus
attempts to model the query generation process: Documents are ranked by
the probability that a query would be observed as a random sample from the
respective document model.

The most common way to do this is to use the multinomial unigram
language model, which is equivalent to a multinomial naive Bayes model
(page 243), where the documents are the classes, each treated in the estima-
tion as a separate “language.” Under this model, we have that:

P(q |Md ) = Kq

∏
t∈V

P(t|Md )tft,d(12.8)

where, again Kq = Ld !/(tft1,d !tft2,d ! · · · tftM,d !) is the multinomial coefficient for
the query q , which we henceforth ignore because it is a constant for a partic-
ular query.

For retrieval based on a language model (henceforth LM), we treat the
generation of queries as a random process. The approach is to

1. Infer a LM for each document.
2. Estimate P(q |Mdi ), the probability of generating the query according to

each of these document models.
3. Rank the documents according to these probabilities.

The intuition of the basic model is that the user has a prototype document in
mind and generates a query based on words that appear in this document.
Often, users have a reasonable idea of terms that are likely to occur in doc-
uments of interest and they will choose query terms that distinguish these
documents from others in the collection.3 Collection statistics are an integral
part of the language model, rather than being used heuristically as in many
other approaches.

12.2.2 Estimating the query generation probability

In this section we describe how to estimate P(q |Md ). The probability of pro-
ducing the query given the LM Md of document d using maximum likelihood
estimation (MLE) and the unigram assumption is:

P̂(q |Md ) =
∏
t∈q

P̂mle(t|Md ) =
∏
t∈q

tft,d

Ld
(12.9)

where Md is the LM of document d, tft,d is the (raw) term frequency of term
t in document d, and Ld is the number of tokens in document d. That is, we

3 Of course, in other cases, they do not. The answer to this within the language modeling
approach is translation LMs, as briefly discussed in Section 12.4.
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just count up how often each word occurred, and divide through by the total
number of words in the document d. This is the same method of calculating
an MLE as we saw in Section 11.3.2 (page 207); but now using a mutinomial
over word counts.

The classic problem with using LMs is one of estimation (the ˆ symbol
on the Ps is used above to stress that the model is estimated): Terms ap-
pear very sparsely in documents. In particular, some words will not have
appeared in the document at all, but are possible words for the information
need, which the user may have used in the query. If we estimate P̂(t|Md ) = 0
for a term missing from a document d, then we get a strict conjunctive se-
mantics: Documents will only give a query nonzero probability if all of the
query terms appear in the document. Zero probabilities are clearly a prob-
lem in other uses of LMs, such as when predicting the next word in a speech
recognition application, because many words will be sparsely represented in
the training data. It may seem rather less clear whether this is problematic in
an IR application. This could be thought of as a human–computer interface
issue: Vector space systems have generally preferred more lenient matching,
although recent web search developments have tended more in the direc-
tion of doing searches with such conjunctive semantics. Regardless of the ap-
proach here, there is a more general problem of estimation: Occurring words
are also poorly estimated; in particular, the probability of words occurring
once in the document is normally overestimated, because their one occur-
rence was partly by chance. The answer to this (as we saw in Section 11.3.2,
page 207) is smoothing. But as people have come to understand the LM ap-
proach better, it has become apparent that the role of smoothing in this model
is not only to avoid zero probabilities. The smoothing of terms actually im-
plements major parts of the term weighting component (Exercise 12.8). It
is not just that an unsmoothed model has conjunctive semantics; an un-
smoothed model works badly because it lacks parts of the term weighting
component.

Thus, we need to smooth probabilities in our document LMs to discount
nonzero probabilities and to give some probability mass to unseen words.
There’s a wide space of approaches to smoothing probability distributions
to deal with this problem. In Section 11.3.2 (page 207), we already discussed
adding a number (1, 1/2, or a small α) to the observed counts and renormal-
izing to give a probability distribution.4 In this section, we mention a couple
of other smoothing methods that involve combining observed counts with a
more general reference probability distribution. The general approach is that
a nonoccurring term should be possible in a query, but its probability should

4 In the context of probability theory, (re)normalization refers to summing numbers that cover
an event space and dividing them through by their sum, so that the result is a probability
distribution, which sums to 1. This is distinct from both the concept of term normalization
in Chapter 2 and the concept of length normalization in Chapter 6, which is done with a L2
norm.
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be somewhat close to but no more likely than would be expected by chance
from the whole collection. That is, if tft,d = 0 then

P̂(t|Md ) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in
practice is to use a mixture between a document-specific multinomial distri-
bution and a multinomial distribution estimated from the entire collection:

P̂(t|d) = λP̂mle(t|Md ) + (1 − λ)P̂mle(t|Mc)(12.10)

where 0 < λ < 1 and Mc is a language model built from the entire document
collection. This mixes the probability from the document with the general
collection frequency of the word. Such a model is referred to as a linear inter-linear inter-

polation polation LM.5 Correctly setting λ is important to the good performance of this
model.

An alternative is to use an LM built from the whole collection as a prior
distribution in a Bayesian updating process (rather than a uniform distribution,Bayesian

smoothing as we saw in Section 11.3.2). We then get the following equation:

P̂(t|d) = tft,d + α P̂(t|Mc)
Ld + α

.(12.11)

Both of these smoothing methods have been shown to perform well in IR
experiments; we stick with the linear interpolation smoothing method for
the rest of this section. Although different in detail, they are both conceptu-
ally similar; in both cases, the probability estimate for a word present in the
document combines a discounted MLE and a fraction of the estimate of its
prevalence in the whole collection, whereas for words not present in a doc-
ument, the estimate is just a fraction of the estimate of the prevalence of the
word in the whole collection.

The role of smoothing in LMs for IR is not simply or principally to avoid es-
timation problems. This was not clear when the models were first proposed,
but it is now understood that smoothing is essential to the good properties
of the models. The reason for this is explored in Exercise 12.8. The extent of
smoothing in these two models is controlled by the λ and α parameters: A
small value of λ or a large value of α means more smoothing. This parameter
can be tuned to optimize performance using a line search (or, for the linear
interpolation model, by other methods, such as the expectation maximiza-
tion algorithm; see Section 16.5, page 338). The value need not be a constant.
One approach is to make the value a function of the query size. This is useful
because a small amount of smoothing (a “conjunctive-like” search) is more

5 It is also referred to as Jelinek-Mercer smoothing.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

12.2 The query likelihood model 227

suitable for short queries, whereas a lot of smoothing is more suitable for
long queries.

To summarize, the retrieval ranking for a query q under the basic LM for
IR we have been considering is given by:

P(d|q ) ∝ P(d)
∏
t∈q

((1 − λ)P(t|Mc) + λP(t|Md )).(12.12)

This equation captures the probability that the document that the user had
in mind was in fact d.

✎ Example 12.3: Suppose the document collection contains two documents:

� d1: Xyzzy reports a profit but revenue is down� d2: Quorus narrows quarter loss but revenue decreases further

The model will be MLE unigram models from the documents and collec-
tion, mixed with λ = 1/2.

Suppose the query is revenue down. Then:

P(q |d1) = [(1/8 + 2/16)/2] × [(1/8 + 1/16)/2](12.13)

= 1/8 × 3/32 = 3/256

P(q |d2) = [(1/8 + 2/16)/2] × [(0/8 + 1/16)/2]

= 1/8 × 1/32 = 1/256

So, the ranking is d1 > d2.

12.2.3 Ponte and Croft’s experiments

Ponte and Croft (1998) present the first experiments on the language mod-
eling approach to IR. Their basic approach is the model that we have pre-
sented until now. However, we have presented an approach where the LM
is a mixture of two multinomials, much as in (Miller et al. 1999; Hiemstra
2000) rather than Ponte and Croft’s multivariate Bernoulli model. The use
of multinomials has been standard in most subsequent work in the LM ap-
proach and experimental results in IR, as well as evidence from text clas-
sification which we consider in Section 13.3 (page 243), suggests that it is
superior. Ponte and Croft argued strongly for the effectiveness of the term
weights that come from the language modeling approach over traditional
tf–idf weights. We present a subset of their results in Figure 12.4 where
they compare tf–idf to language modeling by evaluating TREC topics 202
through 250 over TREC disks 2 and 3. The queries are sentence-length natu-
ral language queries. The LM approach yields significantly better results than
their baseline tf-idf–based term weighting approach. And, indeed, the gains
shown here have been extended in subsequent work.
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precision
Rec. tf-idf LM %chg
0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.3 0.2761 0.3342 +21.0 *
0.4 0.2093 0.2572 +22.9 *
0.5 0.1558 0.2061 +32.3 *
0.6 0.1024 0.1405 +37.1 *
0.7 0.0451 0.0760 +68.7 *
0.8 0.0160 0.0432 +169.6 *
0.9 0.0033 0.0063 +89.3
1.0 0.0028 0.0050 +76.9
Ave 0.1868 0.2233 +19.55 *

Figure 12.4 Results of a comparison of tf–idf with LM term weighting by Ponte and Croft (1998).
The version of tf–idf from the INQUERY IR system includes length normalization of tf. The ta-
ble gives an evaluation according to eleven-point average precision with significance marked
with a * according to a Wilcoxon signed-rank test. The LM approach always does better in these
experiments, but note that where the approach shows significant gains is at higher levels of
recall.

? Exercise 12.6 [	] Consider making a LM from the following training text:

the martian has landed on the latin pop sensation ricky martin
a. Under a MLE-estimated unigram probability model, what are P(the)
and P(martian)?
b. Under a MLE-estimated bigram model, what are P(sensation|pop) and
P(pop|the)?

Exercise 12.7 [		] Suppose we have a collection that consists of the four doc-
uments given in the below table.

docID document text
1 click go the shears boys click click click
2 click click
3 metal here
4 metal shears click here

Build a query likelihood LM for this document collection. Assume a mix-
ture model between the documents and the collection, with both weighted
at 0.5. MLE is used to estimate both as unigram models. Work out the
model probabilities of the queries click, shears, and hence click shears for
each document, and use those probabilities to rank the documents re-
turned by each query. Fill in these probabilities in the below table:
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query doc 1 doc 2 doc 3 doc 4
click

shears

click shears

What is the final ranking of the documents for the query click shears?

Exercise 12.8 [		] Using the calculations in Exercise 12.7 as inspiration or as
examples where appropriate, write one sentence each describing the treat-
ment that the model in Equation (12.10) gives to each of the following
quantities. Include whether it is present in the model or not and whether
the effect is raw or scaled.
a. Term frequency in a document
b. Collection frequency of a term
c. Document frequency of a term
d. Length normalization of a term

Exercise 12.9 [		] In the mixture model approach to the query likelihood
model (Equation (12.12)), the probability estimate of a term is based on
the term frequency of a word in a document, and the collection frequency
of the word. Doing this certainly guarantees that each term of a query (in
the vocabulary) has a nonzero chance of being generated by each docu-
ment. But it has a more subtle but important effect of implementing a form
of term weighting, related to what we saw in Chapter 6. Explain how this
works. In particular, include in your answer a concrete numeric example
showing this term weighting at work.

12.3 Language modeling versus other approaches
in information retrieval

The LM approach provides a novel way of looking at the problem of text
retrieval, which links it with a lot of recent work in speech and language
processing. As Ponte and Croft (1998) emphasize, the LM approach to IR
provides a different approach to scoring matches between queries and docu-
ments, and the hope is that the probabilistic language modeling foundation
improves the weights that are used, and hence the performance of the model.
The major issue is estimation of the document model, such as choices of how
to smooth it effectively. The model has achieved very good retrieval results.
Compared with other probabilistic approaches, such as the BIM from Chap-
ter 11, the main difference initially appears to be that the LM approach does
away with explicitly modeling relevance (whereas this is the central variable
evaluated in the BIM approach). But this may not be the correct way to think
about things, as some of the papers in Section 12.5 further discuss. The LM
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approach assumes that documents and expressions of information needs are
objects of the same type, and assesses their match by importing the tools
and methods of language modeling from speech and natural language pro-
cessing. The resulting model is mathematically precise, conceptually simple,
computationally tractable, and intuitively appealing. This seems similar to
the situation with XML retrieval (Chapter 10); there, the approaches that as-
sume queries and documents are objects of the same type are also among the
most successful.

On the other hand, like all IR models, you can also raise objections to the
model. The assumption of equivalence between document and information
need representation is unrealistic. Current LM approaches use very simple
models of language, usually unigram models. Without an explicit notion of
relevance, relevance feedback is difficult to integrate into the model, as are
user preferences. It also seems necessary to move beyond a unigram model
to accommodate notions of phrase or passage matching or Boolean retrieval
operators. Subsequent work in the LM approach has looked at addressing
some of these concerns, including putting relevance back into the model and
allowing a language mismatch between the query language and the docu-
ment language.

The model has significant relations to traditional tf–idf models. Term fre-
quency is directly represented in tf–idf models, and much recent work has
recognized the importance of document length normalization. The effect of
doing a mixture of document generation probability with collection gener-
ation probability is a little like idf; terms rare in the general collection but
common in some documents will have a greater influence on the ranking of
documents. In most concrete realizations, the models share treating terms as
if they were independent. On the other hand, the intuitions are probabilistic
rather than geometric, the mathematical models are more principled rather
than heuristic, and the details of how statistics like term frequency and doc-
ument length are used differ. If you are concerned mainly with performance
numbers, recent work has shown the LM approach to be very effective in re-
trieval experiments, beating tf–idf and BM25 weights. Nevertheless, there is
perhaps still insufficient evidence that its performance so greatly exceeds that
of a well-tuned traditional vector space retrieval system as to justify chang-
ing an existing implementation.

12.4 Extended language modeling approaches

In this section, we briefly mention some of the work that extends the basic
LM approach.

There are other ways to think of using the LM idea in IR settings, and
many of them have been tried in subsequent work. Rather than looking at
the probability of a document language model Md generating the query, you
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Query Query model P(t|Query)

Document Doc. model P(t|Document)

(a)

(b)
(c)

Figure 12.5 Three ways of developing the language modeling approach. (a) Query likelihood.
(b) Document likelihood. (c) Model comparison.

can look at the probability of a query language model Mq generating the
document. The main reason that doing things in this direction and creating
a document likelihood model is less appealing is that there is much less textdocument

likelihood
model

available to estimate a LM based on the query text, and so the model will
be worse estimated, and will have to depend more on being smoothed with
some other language model. On the other hand, it is easy to see how to incor-
porate relevance feedback into such a model; you can expand the query with
terms taken from relevant documents in the usual way and hence update
the language model Mq (Zhai and Lafferty 2001a). Indeed, with appropriate
modeling choices, this approach leads to the BIM model of Chapter 11. The
relevance model of Lavrenko and Croft (2001) is an instance of a document
likelihood model, which incorporates pseudo relevance feedback into an LM
approach. It achieves very strong empirical results.

Rather than directly generating in either direction, we can make an LM
from both the document and query, and then ask how different these two
language models are from each other. Lafferty and Zhai (2001) lay out these
three ways of thinking about the problem, which we show in Figure 12.5, and
develop a general risk minimization approach for document retrieval. For
instance, one way to model the risk of returning a document d as relevant to
a query q is to use the Kullback-Leibler (KL) divergence between their respectiveKullback-

Leibler
divergence

language models:

R(d; q ) = K L(Md‖Mq ) =
∑
t∈V

P(t|Mq ) log
P(t|Mq )
P(t|Md )

.(12.14)

KL divergence is an asymmetric divergence measure originating in infor-
mation theory, which measures how bad the probability distribution Mq is
at modeling Md (Cover and Thomas 1991; Manning and Schütze 1999). Laf-
ferty and Zhai (2001) present results suggesting that a model comparison
approach outperforms both query-likelihood and document-likelihood ap-
proaches. One disadvantage of using KL divergence as a ranking function is
that scores are not comparable across queries. This does not matter for ad hoc
retrieval, but is important in other applications such as topic tracking. Kraaij
and Spitters (2003) suggest an alternative proposal which models similarity
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as a normalized log-likelihood ratio (or, equivalently, as a difference between
cross-entropies).

Basic LMs do not address issues of alternate expression, that is, syn-
onymy, or any deviation in use of language between queries and documents.
Berger and Lafferty (1999) introduce translation models to bridge this query–
document gap. A translation model lets you generate query words not in atranslation

model document by translation to alternate terms with similar meaning. This also
provides a basis for performing cross-language IR. We assume that the trans-
lation model can be represented by a conditional probability distribution
T(·|·) between vocabulary terms. The form of the translation query gener-
ation model is then:

P(q |Md ) =
∏
t∈q

∑
v∈V

P(v|Md )T(t|v).(12.15)

The term P(v|Md ) is the basic document language model, and the term T(t|v)
performs translation. This model is clearly more computationally intensive
and we needs to build a translation model. The translation model is usually
built using separate resources (such as a traditional thesaurus or bilingual
dictionary or a statistical machine translation system’s translation diction-
ary), but can be built using the document collection if there are pieces of text
that naturally paraphrase or summarize other pieces of text. Candidate ex-
amples are documents and their titles or abstracts, or documents and anchor
text pointing to them in a hypertext environment.

Building extended LM approaches remains an active area of research. In
general, translation models, relevance feedback models, and model compar-
ison approaches have all been demonstrated to improve performance over
the basic query likelihood LM.

12.5 References and further reading

For more details on the basic concepts of probabilistic LMs and techniques
for smoothing, see either Manning and Schütze 1999 (1999, Chapter 6) or
Jurafsky and Martin (2008, Chapter 4).

The important initial papers that originated the language modeling ap-
proach to IR are: (Ponte and Croft 1998; Hiemstra 1998; Berger and Lafferty
1999; Miller et al. 1999). Other relevant papers can be found in the next sev-
eral years of SIGIR proceedings. (Croft and Lafferty 2003) contains a col-
lection of papers from a workshop on language modeling approaches and
Hiemstra and Kraaij (2005) review one prominent thread of work on us-
ing LM approaches for TREC tasks. Zhai and Lafferty (2001b) clarify the
role of smoothing in LMs for IR and present detailed empirical compar-
isons of different smoothing methods. Zaragoza et al. (2003) advocate using
full Bayesian predictive distributions rather than MAP point estimates, but
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although they outperform Bayesian smoothing, they fail to outperform a lin-
ear interpolation. Zhai and Lafferty (2002) argue that a two-stage smoothing
model with first Bayesian smoothing followed by linear interpolation gives
a good model of the task, and performs better and more stably than a single
form of smoothing. A nice feature of the LM approach is that it provides a
convenient and principled way to put various kinds of prior information into
the model; Kraaij et al. (2002) demonstrate this by showing the value of link
information as a prior in improving web entry page retrieval performance.
As briefly discussed in Chapter 16 (page 325), Liu and Croft (2004) show
some gains by smoothing a document LM with estimates from a cluster of
similar documents; Tao et al. (2006) report larger gains by doing document-
similarity based smoothing.

Hiemstra and Kraaij (2005) present TREC results showing a LM approach
beating use of BM25 weights. Recent work has achieved some gains by going
beyond the unigram model, providing the higher order models are smoothed
with lower order models (Gao et al. 2004; Cao et al. 2005), though the gains
to date remain modest. Spärck Jones (2004) presents a critical viewpoint on
the rationale for the language modeling approach, but Lafferty and Zhai
(2003) argue that a unified account can be given of the probabilistic semantics
underlying both the LM approach presented in this chapter and the classi-
cal probabilistic information retrieval approach of Chapter 11. The Lemur
Toolkit (www.lemurproject.org/) provides a flexible open source framework for
investigating language modeling approaches to IR.


