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5 Index compression

Chapter 1 introduced the dictionary and the inverted index as the central
data structures in information retrieval (IR). In this chapter, we employ a
number of compression techniques for dictionary and inverted index that
are essential for efficient IR systems.

One benefit of compression is immediately clear. We need less disk space.
As we will see, compression ratios of 1:4 are easy to achieve, potentially cut-
ting the cost of storing the index by 75%.

There are two more subtle benefits of compression. The first is increased
use of caching. Search systems use some parts of the dictionary and the index
much more than others. For example, if we cache the postings list of a fre-
quently used query term t, then the computations necessary for responding
to the one-term query t can be entirely done in memory. With compression,
we can fit a lot more information into main memory. Instead of having to
expend a disk seek when processing a query with t, we instead access its
postings list in memory and decompress it. As we will see below, there are
simple and efficient decompression methods, so that the penalty of having to
decompress the postings list is small. As a result, we are able to decrease the
response time of the IR system substantially. Because memory is a more ex-
pensive resource than disk space, increased speed owing to caching – rather
than decreased space requirements – is often the prime motivator for com-
pression.

The second more subtle advantage of compression is faster transfer of
data from disk to memory. Efficient decompression algorithms run so fast
on modern hardware that the total time of transferring a compressed chunk
of data from disk and then decompressing it is usually less than transferring
the same chunk of data in uncompressed form. For instance, we can reduce
input/output (I/O) time by loading a much smaller compressed postings
list, even when you add on the cost of decompression. So, in most cases,
the retrieval system runs faster on compressed postings lists than on uncom-
pressed postings lists.
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If the main goal of compression is to conserve disk space, then the speed of
compression algorithms is of no concern. But for improved cache utilization
and faster disk-to-memory transfer, decompression speeds must be high. The
compression algorithms we discuss in this chapter are highly efficient and
can therefore serve all three purposes of index compression.

In this chapter, we define a posting as a docID in a postings list. For exam-posting

ple, the postings list (6; 20, 45, 100), where 6 is the termID of the list’s term,
contains three postings. As discussed in Section 2.4.2 (page 38), postings in
most search systems also contain frequency and position information; but we
will only consider simple docID postings here. See Section 5.4 for references
on compressing frequencies and positions.

This chapter first gives a statistical characterization of the distribution
of the entities we want to compress – terms and postings in large collec-
tions (Section 5.1). We then look at compression of the dictionary, using the
dictionary-as-a-string method and blocked storage (Section 5.2). Section 5.3
describes two techniques for compressing the postings file, variable byte en-
coding and γ encoding.

5.1 Statistical properties of terms in information retrieval

As in the last chapter, we use Reuters-RCV1 as our model collection (see
Table 4.2, page 64). We give some term and postings statistics for the collec-
tion in Table 5.1. “�%” indicates the reduction in size from the previous line.
“T%” is the cumulative reduction from unfiltered.

The table shows the number of terms for different levels of preprocessing
(column 2). The number of terms is the main factor in determining the size
of the dictionary. The number of nonpositional postings (column 3) is an in-
dicator of the expected size of the nonpositional index of the collection. The
expected size of a positional index is related to the number of positions it
must encode (column 4).

In general, the statistics in Table 5.1 show that preprocessing affects the size
of the dictionary and the number of nonpositional postings greatly. Stem-
ming and case folding reduce the number of (distinct) terms by 17% each
and the number of nonpositional postings by 4% and 3%, respectively. The
treatment of the most frequent words is also important. The rule of 30 statesrule of 30

that the 30 most common words account for 30% of the tokens in written
text (31% in the table). Eliminating the 150 most common words from in-
dexing (as stop words; cf. Section 2.2.2, page 25) cuts 25% to 30% of the
nonpositional postings. But, although a stop list of 150 words reduces the
number of postings by a quarter or more, this size reduction does not carry
over to the size of the compressed index. As we will see later in this chapter,
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Table 5.1 The effect of preprocessing on the number of terms, nonpositional postings, and tokens
for Reuters-RCV1. “�%” indicates the reduction in size from the previous line, except that “30 stop
words” and “150 stop words” both use “case folding” as their reference line. “T%” is the cumulative
(“total”) reduction from unfiltered. We performed stemming with the Porter stemmer (Chapter 2,
page 31).

tokens (= number of position
(distinct) terms nonpositional postings entries in postings)

number �% T% number �% T% number �% T%

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9
case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9
30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38
150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52
stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52

the postings lists of frequent words require only a few bits per posting after
compression.

The deltas in the table are in a range typical of large collections. Note, how-
ever, that the percentage reductions can be very different for some text col-
lections. For example, for a collection of web pages with a high proportion
of French text, a lemmatizer for French reduces vocabulary size much more
than the Porter stemmer does for an English-only collection because French
is a morphologically richer language than English.

The compression techniques we describe in the remainder of this chap-
ter are lossless, that is, all information is preserved. Better compression ratioslossless

can be achieved with lossy compression, which discards some information.lossy
compression Case folding, stemming, and stop word elimination are forms of lossy com-

pression. Similarly, the vector space model (Chapter 6) and dimensionality
reduction techniques like latent semantic indexing (Chapter 18) create com-
pact representations from which we cannot fully restore the original collec-
tion. Lossy compression makes sense when the “lost” information is unlikely
ever to be used by the search system. For example, web search is character-
ized by a large number of documents, short queries, and users who only look
at the first few pages of results. As a consequence, we can discard postings of
documents that would only be used for hits far down the list. Thus, there are
retrieval scenarios where lossy methods can be used for compression without
any reduction in effectiveness.

Before introducing techniques for compressing the dictionary, we want to
estimate the number of distinct terms M in a collection. It is sometimes said
that languages have a vocabulary of a certain size. The second edition of
the Oxford English Dictionary (OED) defines more than 600,000 words. But
the vocabulary of most large collections is much larger than the OED. The
OED does not include most names of people, locations, products, or scientific
entities like genes. These names need to be included in the inverted index, so
our users can search for them.
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Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T (number of tokens)
for Reuters-RCV1. For these data, the dashed line log10 M = 0.49 ∗ log10 T + 1.64 is the best least
squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-Heaps’ law

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the pa-
rameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for Heaps’
law is that the simplest possible relationship between collection size and
vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law
predicts 38,323 terms:

44 × 1,000,0200.49 ≈ 38,323.

The actual number is 38,365 terms, very close to the prediction.
The parameter k is quite variable because vocabulary growth depends a

lot on the nature of the collection and how it is processed. Case-folding and
stemming reduce the growth rate of the vocabulary, whereas including num-
bers and spelling errors increase it. Regardless of the values of the parameters
for a particular collection, Heaps’ law suggests that (i) the dictionary size
continues to increase with more documents in the collection, rather than a
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maximum vocabulary size being reached, and (ii) the size of the dictionary
is quite large for large collections. These two hypotheses have been empir-
ically shown to be true of large text collections (Section 5.4). So dictionary
compression is important for an effective information retrieval system.

5.1.2 Zipf’s law: Modeling the distribution of terms

We also want to understand how terms are distributed across documents.
This helps us to characterize the properties of the algorithms for compressing
postings lists in Section 5.3.

A commonly used model of the distribution of terms in a collection is Zipf’sZipf’s law

law. It states that, if t1 is the most common term in the collection, t2 is the next
most common, and so on, then the collection frequency cfi of the ith most
common term is proportional to 1/ i :

cfi ∝ 1
i
.(5.2)

So if the most frequent term occurs cf1 times, then the second most frequent
term has half as many occurrences, the third most frequent term a third as
many occurrences, and so on. The intuition is that frequency decreases very
rapidly with rank. Equation (5.2) is one of the simplest ways of formalizing
such a rapid decrease and it has been found to be a reasonably good model.

Equivalently, we can write Zipf’s law as cfi = cik or as log cfi = log c +
k log i where k = −1 and c is a constant to be defined in Section 5.3.2. It is
therefore a power law with exponent k = −1. See Chapter 19, page 389, for an-power law

other power law, a law characterizing the distribution of links on web pages.
The log–log graph in Figure 5.2 plots the collection frequency of a term as

a function of its rank for Reuters-RCV1. A line with slope –1, corresponding
to the Zipf function log cfi = log c − log i , is also shown. The fit of the data
to the law is not particularly good, but good enough to serve as a model for
term distributions in our calculations in Section 5.3.

? Exercise 5.1 [	] Assuming one machine word per posting, what is the size of
the uncompressed (nonpositional) index for different tokenizations based
on Table 5.1? How do these numbers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?
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Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of frequency rank
for the terms in the collection. The line is the distribution predicted by Zipf’s law (weighted
least-squares fit; intercept is 6.95).

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-
put. Although dictionaries of very large collections fit into the memory of a
standard desktop machine, this is not true of many other application scenar-
ios. For example, an enterprise search server for a large corporation may have
to index a multiterabyte collection with a comparatively large vocabulary
because of the presence of documents in many different languages. We also
want to be able to design search systems for limited hardware such as mo-
bile phones and onboard computers. Other reasons for wanting to conserve
memory are fast startup time and having to share resources with other ap-
plications. The search system on your PC must get along with the memory-
hogging word processing suite you are using at the same time.

5.2.1 Dictionary as a string

The simplest data structure for the dictionary is to sort the vocabulary lex-
icographically and store it in an array of fixed-width entries as shown in
Figure 5.3. We allocate 20 bytes for the term itself (because few terms have
more than twenty characters in English), 4 bytes for its document frequency,
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term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
. . . . . . . . .
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

Figure 5.3 Storing the dictionary as an array of fixed-width entries.

and 4 bytes for the pointer to its postings list. Four-byte pointers resolve a
4 gigabytes (GB) address space. For large collections like the web, we need
to allocate more bytes per pointer. We look up terms in the array by bi-
nary search. For Reuters-RCV1, we need M × (20 + 4 + 4) = 400,000 × 28 =
11.2 megabytes (MB) for storing the dictionary in this scheme.

Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about eight characters (Table 4.2, page 64), so on av-
erage we are wasting twelve characters in the fixed-width scheme. Also,
we have no way of storing terms with more than twenty characters like
hydrochlorofluorocarbons and supercalifragilisticexpialidocious. We can overcome
these shortcomings by storing the dictionary terms as one long string of char-
acters, as shown in Figure 5.4. The pointer to the next term is also used to
demarcate the end of the current term. As before, we locate terms in the data
structure by way of binary search in the (now smaller) table. This scheme

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o .  .  .

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

 
 
 
 
 
. . .

4 bytes

term ptr.

3 bytes

. . .

→

→

→

→

→

Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding term and the
beginning of the next. For example, the first three terms in this example are systile, syzygetic, and
syzygial.
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. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n .  .  .
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→

→
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Figure 5.5 Blocked storage with four terms per block. The first block consists of systile, syzygetic,
syzygial, and syzygy with lengths of seven, nine, eight, and six characters, respectively. Each term is
preceded by a byte encoding its length that indicates how many bytes to skip to reach subsequent
terms.

saves us 60% compared to fixed-width storage – 12 bytes on average of the
20 bytes we allocated for terms before. However, we now also need to store
term pointers. The term pointers resolve 400,000 × 8 = 3.2 × 106 positions,
so they need to be log2 3.2 × 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000 × (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (Figure 5.5). We store the length of the term in the string as an addi-
tional byte at the beginning of the term. We thus eliminate k − 1 term point-
ers, but need an additional k bytes for storing the length of each term. For
k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an additional
k = 4 bytes for term lengths. So the total space requirements for the diction-
ary of Reuters-RCV1 are reduced by 5 bytes per four-term block, or a total of
400,000 × 1/4 × 5 = 0.5 MB, bringing us down to 7.1 MB.

By increasing the block size k, we get better compression. However, there is
a tradeoff between compression and the speed of term lookup. For the eight-
term dictionary in Figure 5.6, steps in binary search are shown as double lines
and steps in list search as simple lines. We search for terms in the uncom-
pressed dictionary by binary search (a). In the compressed dictionary, we first
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(a) aid

box

den

ex

job

ox

pit

win

(b)
aid box den ex

job ox pit win

Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary compressed by blocking
with k = 4 (b).

locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share com-
mon prefixes. This observation leads to front coding (Figure 5.7). A commonfront coding

prefix is identified for a subsequence of the term list and then referred to
with a special character. In the case of Reuters, front coding saves another
1.2 MB, as we found in an experiment.

Other schemes with even greater compression rely on minimal perfect
hashing, that is, a hash function that maps M terms onto [1, . . . , M] without
collisions. However, we cannot adapt perfect hashes incrementally because
each new term causes a collision and therefore requires the creation of a new
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One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓

. . . further compressed with front coding.
8 a u t o m a t ∗ a 1 � e 2 � i c 3 � i o n

Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is encoded by
marking the end of the prefix with ∗ and replacing it with � in subsequent terms. As before, the
first byte of each entry encodes the number of characters.

perfect hash function. Therefore, they cannot be used in a dynamic envi-
ronment.

Even with the best compression scheme, it may not be feasible to store the
entire dictionary in main memory for very large text collections and for hard-
ware with limited memory. If we have to partition the dictionary onto pages
that are stored on disk, then we can index the first term of each page using
a B-tree. For processing most queries, the search system has to go to disk
anyway to fetch the postings. One additional seek for retrieving the term’s
dictionary page from disk is a significant, but tolerable increase in the time it
takes to process a query.

Table 5.2 summarizes the compression achieved by the four dictionary
data structures.

? Exercise 5.2 Estimate the space usage of the Reuters-RCV1 dictionary with
blocks of size k = 8 and k = 16 in blocked dictionary storage.

Exercise 5.3 Estimate the time needed for term lookup in the compressed
dictionary of Reuters-RCV1 with block sizes of k = 4 (Figure 5.6, b), k = 8,
and k = 16. What is the slowdown compared with k = 1 (Figure 5.6, a)?

5.3 Postings file compression

Recall from Table 4.2 (page 64) that Reuters-RCV1 has 800,000 documents,
200 tokens per document, six characters per token, and 100,000,000 post-
ings where we define a posting in this chapter as a docID in a postings
list, that is, excluding frequency and position information. These numbers

Table 5.2 Dictionary compression for Reuters-RCV1.

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
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Table 5.3 Encoding gaps instead of document IDs. For example, we store gaps 107, 5, 43, . . . ,
instead of docIDs 283154, 283159, 283202, . . . for computer. The first docID is left unchanged (only
shown for arachnocentric).

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .
gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .
gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100
gaps 252000 248100

correspond to line 3 (“case folding”) in Table 5.1. Document identifiers
are log2 800,000 ≈ 20 bits long. Thus, the size of the collection is about
800,000 × 200 × 6 bytes = 960 MB and the size of the uncompressed postings
file is 100,000,000 × 20/8 = 250 MB.

To devise a more efficient representation of the postings file, one that uses
fewer than 20 bits per document, we observe that the postings for frequent
terms are close together. Imagine going through the documents of a collec-
tion one by one and looking for a frequent term like computer. We will find
a document containing computer, then we skip a few documents that do not
contain it, then there is again a document with the term and so on (see Ta-
ble 5.3). The key idea is that the gaps between postings are short, requiring a
lot less space than 20 bits to store. In fact, gaps for the most frequent terms
such as the and for are mostly equal to 1. But the gaps for a rare term that oc-
curs only once or twice in a collection (e.g., arachnocentric in Table 5.3) have
the same order of magnitude as the docIDs and need 20 bits. For an econom-
ical representation of this distribution of gaps, we need a variable encoding
method that uses fewer bits for short gaps.

To encode small numbers in less space than large numbers, we look at two
types of methods: bytewise compression and bitwise compression. As the
names suggest, these methods attempt to encode gaps with the minimum
number of bytes and bits, respectively.

5.3.1 Variable byte codes

Variable byte (VB) encoding uses an integral number of bytes to encode a gap.variable byte
encoding The last 7 bits of a byte are “payload” and encode part of the gap. The first

Table 5.4 VB encoding. Gaps are encoded using an integral number of bytes.
The first bit, the continuation bit, of each byte indicates whether the code ends
with this byte (1) or not (0).

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001
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VBEncodeNumber(n)
1 bytes ← 〈〉
2 while true
3 do Prepend(bytes, n mod 128)
4 if n < 128
5 then Break
6 n ← n div 128
7 bytes[Length(bytes)] += 128
8 return bytes

VBEncode(numbers)
1 bytestream ← 〈〉
2 for each n ∈ numbers
3 do bytes ← VBEncodeNumber(n)
4 bytestream ← Extend(bytestream, bytes)
5 return bytestream

VBDecode(bytestream)
1 numbers ← 〈〉
2 n ← 0
3 for i ← 1 to Length(bytestream)
4 do if bytestream[i] < 128
5 then n ← 128 × n + bytestream[i]
6 else n ← 128 × n + (bytestream[i] − 128)
7 Append(numbers, n)
8 n ← 0
9 return numbers

Figure 5.8 VB encoding and decoding. The functions div and mod compute integer divi-
sion and remainder after integer division, respectively. Prepend adds an element to the begin-
ning of a list, for example, Preprend(〈1, 2〉, 3) = 〈3, 1, 2〉. Extend extends a list, for example,
Extend(〈1, 2〉, 〈3, 4〉) = 〈1, 2, 3, 4〉.

bit of the byte is a continuation bit. It is set to 1 for the last byte of the encodedcontinuation
bit gap and to 0 otherwise. To decode a variable byte code, we read a sequence

of bytes with continuation bit 0 terminated by a byte with continuation bit 1.
We then extract and concatenate the 7-bit parts. Figure 5.8 gives pseudocode
for VB encoding and decoding and Table 5.4 an example of a VB-encoded
postings list.1

With VB compression, the size of the compressed index for Reuters-RCV1
is 116 MB as we verified in an experiment. This is a more than 50% reduction
of the size of the uncompressed index (see Table 5.6).

1 Note that the origin is 0 in the table. Because we never need to encode a docID or a gap of 0,
in practice the origin is usually 1, so that 10000000 encodes 1, 10000101 encodes 6 (not 5 as in
the table), and so on.
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Table 5.5 Some examples of unary and γ codes. Unary codes are only shown
for the smaller numbers. Commas in γ codes are for readability only and are
not part of the actual codes.

number unary code length offset γ code

0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

The idea of VB encoding can also be applied to larger or smaller units than
bytes: 32-bit words, 16-bit words, and 4-bit words or nibbles. Larger wordsnibble

further decrease the amount of bit manipulation necessary at the cost of less
effective (or no) compression. Word sizes smaller than bytes get even bet-
ter compression ratios at the cost of more bit manipulation. In general, bytes
offer a good compromise between compression ratio and speed of decom-
pression.

For most IR systems variable byte codes offer an excellent tradeoff between
time and space. They are also simple to implement – most of the alterna-
tives referred to in Section 5.4 are more complex. But if disk space is a scarce
resource, we can achieve better compression ratios by using bit-level encod-
ings, in particular two closely related encodings: γ codes, which we will turn
to next, and δ codes (Exercise 5.9).

✄ 5.3.2 γ Codes

VB codes use an adaptive number of bytes depending on the size of the gap.
Bit-level codes adapt the length of the code on the finer grained bit level. The
simplest bit-level code is unary code. The unary code of n is a string of n 1sunary code

followed by a 0 (see the first two columns of Table 5.5). Obviously, this is not
a very efficient code, but it will come in handy in a moment.

How efficient can a code be in principle? Assuming the 2n gaps G with
1 ≤ G ≤ 2n are all equally likely, the optimal encoding uses n bits for each G.
So some gaps (G = 2n in this case) cannot be encoded with fewer than log2 G
bits. Our goal is to get as close to this lower bound as possible.

A method that is within a factor of optimal is γ encoding. γ codes imple-γ encoding

ment variable-length encoding by splitting the representation of a gap G
into a pair of length and offset. Offset is G in binary, but with the leading 1
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Figure 5.9 Entropy H(P) as a function of P(x1) for a sample space with two outcomes x1 and x2.

removed.2 For example, for 13 (binary 1101) offset is 101. Length encodes the
length of offset in unary code. For 13, the length of offset is 3 bits, which is 1110
in unary. The γ code of 13 is therefore 1110101, the concatenation of length
1110 and offset 101. The right hand column of Table 5.5 gives additional ex-
amples of γ codes.

A γ code is decoded by first reading the unary code up to the 0 that ter-
minates it, for example, the four bits 1110 when decoding 1110101. Now we
know how long the offset is: 3 bits. The offset 101 can then be read correctly
and the 1 that was chopped off in encoding is prepended: 101 → 1101 = 13.

The length of offset is �log2 G� bits and the length of length is �log2 G� +
1 bits, so the length of the entire code is 2 × �log2 G� + 1 bits. γ codes are
always of odd length and they are within a factor of 2 of what we claimed
to be the optimal encoding length log2 G. We derived this optimum from the
assumption that the 2n gaps between 1 and 2n are equiprobable. But this need
not be the case. In general, we do not know the probability distribution over
gaps a priori.

The characteristic of a discrete probability distribution3 P that determines
its coding properties (including whether a code is optimal) is its entropyentropy

H(P), which is defined as follows:

H(P) = −
∑
x∈X

P(x) log2 P(x)

where X is the set of all possible numbers we need to be able to encode (and
therefore

∑
x∈X P(x) = 1.0). Entropy is a measure of uncertainty as shown

2 We assume here that G has no leading 0s. If there are any, they are removed before deleting
the leading 1.

3 Readers who want to review basic concepts of probability theory may want to consult Rice
(2006) or Ross (2006). Note that we are interested in probability distributions over integers
(gaps, frequencies, etc.), but that the coding properties of a probability distribution are inde-
pendent of whether the outcomes are integers or something else.
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in Figure 5.9 for a probability distribution P over two possible outcomes,
namely, X = {x1, x2}. Entropy is maximized (H(P) = 1) for P(x1) = P(x2) =
0.5 when uncertainty about which xi will appear next is largest; and mini-
mized (H(P) = 0) for P(x1) = 1, P(x2) = 0 and for P(x1) = 0, P(x2) = 1 when
there is absolute certainty.

It can be shown that the lower bound for the expected length E(L) of a
code L is H(P) if certain conditions hold (see the references). It can further
be shown that for 1 < H(P) < ∞, γ encoding is within a factor of 3 of this
optimal encoding, approaching 2 for large H(P):

E(Lγ )
H(P)

≤ 2 + 1
H(P)

≤ 3.

What is remarkable about this result is that it holds for any probability dis-
tribution P . So without knowing anything about the properties of the distri-
bution of gaps, we can apply γ codes and be certain that they are within a
factor of ≈2 of the optimal code for distributions of large entropy. A code like
γ code with the property of being within a factor of optimal for an arbitrary
distribution P is called universal.universal

code In addition to universality, γ codes have two other properties that are use-
ful for index compression. First, they are prefix free, namely, no γ code is theprefix free

prefix of another. This means that there is always a unique decoding of a
sequence of γ codes – and we do not need delimiters between them, which
would decrease the efficiency of the code. The second property is that γ codes
are parameter free. For many other efficient codes, we have to fit the parame-parameter

free ters of a model (e.g., the binomial distribution) to the distribution of gaps in
the index. This complicates the implementation of compression and decom-
pression. For instance, the parameters need to be stored and retrieved. And
in dynamic indexing, the distribution of gaps can change, so that the original
parameters are no longer appropriate. These problems are avoided with a
parameter-free code.

How much compression of the inverted index do γ codes achieve? To an-
swer this question we use Zipf’s law, the term distribution model introduced
in Section 5.1.2. According to Zipf’s law, the collection frequency cfi is pro-
portional to the inverse of the rank i , that is, there is a constant c′ such that:

cfi = c′

i
.(5.3)

We can choose a different constant c such that the fractions c/ i are relative
frequencies and sum to 1 (that is, c/ i = cfi/T):

1 =
M∑

i=1

c
i

= c
M∑

i=1

1
i

= c HM(5.4)

c = 1
HM

(5.5)
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Figure 5.10 Stratification of terms for estimating the size of a γ encoded inverted index.

where M is the number of distinct terms and HM is the Mth harmonic num-
ber.4 Reuters-RCV1 has M = 400,000 distinct terms and HM ≈ ln M, so we
have

c = 1
HM

≈ 1
ln M

= 1
ln 400,000

≈ 1
13

.

Thus the ith term has a relative frequency of roughly 1/(13i), and the ex-
pected average number of occurrences of term i in a document of length L
is:

L
c
i

≈ 200 × 1
13

i
≈ 15

i

where we interpret the relative frequency as a term occurrence probability.
Recall that 200 is the average number of tokens per document in Reuters-
RCV1 (Table 4.2).

Now we have derived term statistics that characterize the distribution of
terms in the collection and, by extension, the distribution of gaps in the post-
ings lists. From these statistics, we can calculate the space requirements for an
inverted index compressed with γ encoding. We first stratify the vocabulary
into blocks of size Lc = 15. On average, term i occurs 15/ i times per doc-
ument. So the average number of occurrences f per document is 1 ≤ f for
terms in the first block, corresponding to a total number of N gaps per term.
The average is 1

2 ≤ f < 1 for terms in the second block, corresponding to N/2
gaps per term, and 1

3 ≤ f < 1
2 for terms in the third block, corresponding to

N/3 gaps per term, and so on. (We take the lower bound because it simplifies
subsequent calculations. As we will see, the final estimate is too pessimistic,
even with this assumption.) We will make the somewhat unrealistic assump-
tion that all gaps for a given term have the same size as shown in Figure 5.10.

4 Note that, unfortunately, the conventional symbol for both entropy and harmonic number is
H. Context should make clear which is meant in this chapter.
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Assuming such a uniform distribution of gaps, we then have gaps of size 1
in block 1, gaps of size 2 in block 2, and so on.

Encoding the N/j gaps of size j with γ codes, the number of bits needed
for the postings list of a term in the j th block (corresponding to one row in
the figure) is:

bits-per-row = N
j

× (2 × �log2 j� + 1)

≈ 2N log2 j
j

.

To encode the entire block, we need (Lc) · (2N log2 j)/j bits. There are M/(Lc)
blocks, so the postings file as a whole will take up:

M
Lc∑

j=1

2NLc log2 j
j

.(5.6)

For Reuters-RCV1, M
Lc ≈ 400,000/15 ≈ 27,000 and

27,000∑
j=1

2 × 106 × 15 log2 j
j

≈ 224 MB.(5.7)

So the postings file of the compressed inverted index for our 960 MB collec-
tion has a size of 224 MB, one fourth the size of the original collection.

When we run γ compression on Reuters-RCV1, the actual size of the com-
pressed index is even lower: 101 MB, a bit more than one tenth of the size of
the collection. The reason for the discrepancy between predicted and actual
value is that (i) Zipf’s law is not a very good approximation of the actual dis-
tribution of term frequencies for Reuters-RCV1 and (ii) gaps are not uniform.
The Zipf model predicts an index size of 251 MB for the unrounded numbers
from Table 4.2. If term frequencies are generated from the Zipf model and a
compressed index is created for these artificial terms, then the compressed
size is 254 MB. So to the extent that the assumptions about the distribution
of term frequencies are accurate, the predictions of the model are correct.

Table 5.6 summarizes the compression techniques covered in this chapter.
The term incidence matrix (Figure 1.1, page 4) for Reuters-RCV1 has size
400,000 × 800,000 = 40 × 8 × 109 bits or 40 GB.

γ Codes achieve great compression ratios – about 15% better than vari-
able byte codes for Reuters-RCV1. But they are expensive to decode. This is
because many bit-level operations – shifts and masks – are necessary to de-
code a sequence of γ codes as the boundaries between codes will usually be
somewhere in the middle of a machine word. As a result, query processing is
more expensive for γ codes than for variable byte codes. Whether we choose
variable byte or γ encoding depends on the characteristics of an application,
for example, on the relative weights we give to conserving disk space versus
maximizing query response time.
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Table 5.6 Index and dictionary compression for Reuters-RCV1.
The compression ratio depends on the proportion of actual text
in the collection. Reuters-RCV1 contains a large amount of XML
markup. Using the two best compression schemes, γ encoding
and blocking with front coding, the ratio compressed index to
collection size is therefore especially small for Reuters-RCV1:
(101 + 5.9)/3600 ≈ 0.03.

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
term incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

The compression ratio for the index in Table 5.6 is about 25%: 400 MB (un-
compressed, each posting stored as a 32-bit word) versus 101 MB (γ ) and 116
MB (VB). This shows that both γ and VB codes meet the objectives we stated
in the beginning of the chapter. Index compression substantially improves
time and space efficiency of indexes by reducing the amount of disk space
needed, increasing the amount of information that can be kept in the cache,
and speeding up data transfers from disk to memory.

? Exercise 5.4 [	] Compute variable byte codes for the numbers in Tables 5.3
and 5.5.

Exercise 5.5 [	] Compute variable byte and γ codes for the postings list 〈777,
17743, 294068, 31251336〉. Use gaps instead of docIDs where possible. Write
binary codes in 8-bit blocks.

Exercise 5.6 Consider the postings list 〈4, 10, 11, 12, 15, 62, 63, 265, 268,
270, 400〉 with a corresponding list of gaps 〈4, 6, 1, 1, 3, 47, 1, 202,
3, 2, 130〉. Assume that the length of the postings list is stored separately,
so the system knows when a postings list is complete. Using variable byte
encoding: (i) What is the largest gap you can encode in 1 byte? (ii) What
is the largest gap you can encode in 2 bytes? (iii) How many bytes will
the above postings list require under this encoding? (Count only space for
encoding the sequence of numbers.)

Exercise 5.7
A little trick is to notice that a gap cannot be of length 0 and that the stuff
left to encode after shifting cannot be 0. Based on these observations: (i)
Suggest a modification to variable byte encoding that allows you to encode
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slightly larger gaps in the same amount of space. (ii) What is the largest
gap you can encode in 1 byte? (iii) What is the largest gap you can encode
in 2 bytes? (iv) How many bytes will the postings list in Exercise 5.6 re-
quire under this encoding? (Count only space for encoding the sequence
of numbers.)

Exercise 5.8 [	] From the following sequence of γ -coded gaps, re-
construct first the gap sequence and then the postings sequence:
1110001110101011111101101111011.

Exercise 5.9 γ Codes are relatively inefficient for large numbers (e.g., 1025 in
Table 5.5) as they encode the length of the offset in inefficient unary code.
δ codes differ from γ codes in that they encode the first part of the codeδ codes

(length) in γ code instead of unary code. The encoding of offset is the same.
For example, the δ code of 7 is 10,0,11 (again, we add commas for read-
ability). 10,0 is the γ code for length (2 in this case) and the encoding of
offset (11) is unchanged. (i) Compute the δ codes for the other numbers in
Table 5.5. For what range of numbers is the δ code shorter than the γ code?
(ii) γ code beats variable byte code in Table 5.6 because the index contains
stop words and thus many small gaps. Show that variable byte code is
more compact if larger gaps dominate. (iii) Compare the compression ra-
tios of δ code and variable byte code for a distribution of gaps dominated
by large gaps.

Exercise 5.10 [	] We have defined unary codes as being “10”: sequences of
1s terminated by a 0. Interchanging the roles of 0s and 1s yields an equiv-
alent “01” unary code. When this 01 unary code is used, the construction
of a γ code can be stated as follows: (1) Write G down in binary using
b = �log2 j� + 1 bits. (2) Prepend (b − 1) 0s. (i) Encode the numbers in Ta-
ble 5.5 in this alternative γ code. (ii) Show that this method produces a
well-defined alternative γ code in the sense that it has the same length
and can be uniquely decoded.

Exercise 5.11 [	 	 	] Unary code is not a universal code in the sense defined
above. However, there exists a distribution over gaps for which unary code
is optimal. Which distribution is this?

Exercise 5.12 Give some examples of terms that violate the assumption that
gaps all have the same size (which we made when estimating the space
requirements of a γ -encoded index). What are general characteristics of
these terms?

Exercise 5.13 Consider a term whose postings list has size n, say, n = 10,000.
Compare the size of the γ -compressed gap-encoded postings list if the dis-
tribution of the term is uniform (i.e., all gaps have the same size) versus its
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Table 5.7 Two gap sequences to be merged in blocked sort-based indexing

γ encoded gap sequence of run 1 1110110111111001011111111110100011111001
γ encoded gap sequence of run 2 11111010000111111000100011111110010000011111010101

size when the distribution is not uniform. Which compressed postings list
is smaller?

Exercise 5.14 Work out the sum in Equation (5.7) and show it adds up to
about 251 MB. Use the numbers in Table 4.2, but do not round Lc, c, and
the number of vocabulary blocks.

Exercise 5.15 Go through the above calculation of index size and explicitly
state all the approximations that were made to arrive at Equation 5.6.

Exercise 5.16 For a collection of your choosing, determine the number of
documents and terms and the average length of a document. (i) How large
is the inverted index predicted to be by Equation (5.6)? (ii) Implement an
indexer that creates a γ -compressed inverted index for the collection. How
large is the actual index? (iii) Implement an indexer that uses variable byte
encoding. How large is the variable byte encoded index?

Exercise 5.17 To be able to hold as many postings as possible in main mem-
ory, it is a good idea to compress intermediate index files during index
construction. (i) This makes merging runs in blocked sort-based index-
ing more complicated. As an example, work out the γ -encoded merged
sequence of the gaps in Table 5.7. (ii) Index construction is more space
efficient when using compression. Would you also expect it to be faster?

Exercise 5.18 (i) Show that the size of the vocabulary is finite according to
Zipf’s law and infinite according to Heaps’ law. (ii) Can we derive Heaps’
law from Zipf’s law?

5.4 References and further reading

Heaps’ law was discovered by Heaps (1978). See also Baeza-Yates and
Ribeiro-Neto (1999). A detailed study of vocabulary growth in large collec-
tions is (Williams and Zobel 2005). Zipf’s law is due to Zipf (1949). Witten
and Bell (1990) investigate the quality of the fit obtained by the law. Other
term distribution models, including K mixture and two-poisson model, are
discussed by Manning and Schütze (1999, Chapter 15). Carmel et al. (2001),
Büttcher and Clarke (2006), Blanco and Barreiro (2007), and Ntoulas and Cho
(2007) show that lossy compression can achieve good compression with no
or no significant decrease in retrieval effectiveness.

Dictionary compression is covered in detail by Witten et al. (1999, Chap-
ter 4), which is recommended as additional reading.
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Subsection 5.3.1 is based on (Scholer et al. 2002). The authors find that vari-
able byte codes process queries two times faster than either bit-level com-
pressed indexes or uncompressed indexes with a 30% penalty in compres-
sion ratio compared with the best bit-level compression method. They also
show that compressed indexes can be superior to uncompressed indexes not
only in disk usage, but also in query processing speed. Compared with VB
codes, “variable nibble” codes showed 5% to 10% better compression and up
to one third worse effectiveness in one experiment (Anh and Moffat 2005).
Trotman (2003) also recommends using VB codes unless disk space is at a
premium. In recent work, Anh and Moffat (2005, 2006a) and Zukowski et al.
(2006) have constructed word-aligned binary codes that are both faster in
decompression and at least as efficient as VB codes. Zhang et al. (2007) in-
vestigate the increased effectiveness of caching when a number of different
compression techniques for postings lists are used on modern hardware.

δ codes (Exercise 5.9) and γ codes were introduced by Elias (1975), who
proved that both codes are universal. In addition, δ codes are asymptotically
optimal for H(P) → ∞. δ codes perform better than γ codes if large num-
bers (greater than 15) dominate. A good introduction to information theory,
including the concept of entropy, is (Cover and Thomas 1991). While Elias
codes are only asymptotically optimal, arithmetic codes (Witten et al. 1999,
Section 2.4) can be constructed to be arbitrarily close to the optimum H(P)
for any P .

Several additional index compression techniques are covered by Witten
et al. (1999; Sections 3.3 and 3.4 and Chapter 5). They recommend using
parameterized codes for index compression, codes that explicitly model theparameterized

code probability distribution of gaps for each term. For example, they show that
Golomb codes achieve better compression ratios than γ codes for large col-Golomb

codes lections. Moffat and Zobel (1992) compare several parameterized methods,
including LLRUN (Fraenkel and Klein 1985).

The distribution of gaps in a postings list depends on the assignment of
docIDs to documents. A number of researchers have looked into assigning
docIDs in a way that is conducive to the efficient compression of gap se-
quences (Moffat and Stuiver 1996; Blandford and Blelloch 2002; Silvestri et al.
2004; Blanco and Barreiro 2006; Silvestri 2007). These techniques assign do-
cIDs in a small range to documents in a cluster where a cluster can consist
of all documents in a given time period, on a particular web site, or sharing
another property. As a result, when a sequence of documents from a clus-
ter occurs in a postings list, their gaps are small and can be more effectively
compressed.

Different considerations apply to the compression of term frequencies and
word positions than to the compression of docIDs in postings lists. See Scho-
ler et al. (2002) and Zobel and Moffat (2006). Zobel and Moffat (2006) is
recommended in general as an in-depth and up-to-date tutorial on inverted
indexes, including index compression.
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This chapter only looks at index compression for Boolean retrieval. For
ranked retrieval (Chapter 6), it is advantageous to order postings according
to term frequency instead of docID. During query processing, the scanning
of many postings lists can then be terminated early because smaller weights
do not change the ranking of the highest ranked k documents found so far. It
is not a good idea to precompute and store weights in the index (as opposed
to frequencies) because they cannot be compressed as well as integers (see
Section 7.1.5, page 129).

Document compression can also be important in an efficient information re-
trieval system. De Moura et al. (2000) and Brisaboa et al. (2007) describe
compression schemes that allow direct searching of terms and phrases in the
compressed text, which is infeasible with standard text compression utilities
like gzip and compress.


