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1Boolean retrieval

The meaning of the term information retrieval (IR) can be very broad. Just get-
ting a credit card out of your wallet so that you can type in the card number
is a form of information retrieval. However, as an academic field of study,
information retrieval might be defined thus:information

retrieval
Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

As defined in this way, information retrieval used to be an activity that only
a few people engaged in: reference librarians, paralegals, and similar pro-
fessional searchers. Now the world has changed, and hundreds of millions
of people engage in information retrieval every day when they use a web
search engine or search their email.1 Information retrieval is fast becoming
the dominant form of information access, overtaking traditional database-
style searching (the sort that is going on when a clerk says to you: “I’m sorry,
I can only look up your order if you can give me your order ID”).

Information retrieval can also cover other kinds of data and informa-
tion problems beyond that specified in the core definition above. The term
“unstructured data” refers to data that does not have clear, semantically
overt, easy-for-a-computer structure. It is the opposite of structured data, the
canonical example of which is a relational database, of the sort companies
usually use to maintain product inventories and personnel records. In reality,
almost no data are truly “unstructured.” This is definitely true of all text data
if you count the latent linguistic structure of human languages. But even ac-
cepting that the intended notion of structure is overt structure, most text has
structure, such as headings, paragraphs, and footnotes, which is commonly
represented in documents by explicit markup (such as the coding underlying
web pages). Information retrieval is also used to facilitate “semistructured”

1 In modern parlance, the word “search” has tended to replace “(information) retrieval”; the
term “search” is quite ambiguous, but in context we use the two synonymously.
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search such as finding a document where the title contains Java and the body
contains threading.

The field of IR also covers supporting users in browsing or filtering docu-
ment collections or further processing a set of retrieved documents. Given a
set of documents, clustering is the task of coming up with a good grouping
of the documents based on their contents. It is similar to arranging books on
a bookshelf according to their topic. Given a set of topics, standing informa-
tion needs, or other categories (such as suitability of texts for different age
groups), classification is the task of deciding which class(es), if any, each of a
set of documents belongs to. It is often approached by first manually classi-
fying some documents and then hoping to be able to classify new documents
automatically.

Information retrieval systems can also be distinguished by the scale at
which they operate, and it is useful to distinguish three prominent scales.
In web search, the system has to provide search over billions of documents
stored on millions of computers. Distinctive issues are needing to gather doc-
uments for indexing, being able to build systems that work efficiently at this
enormous scale, and handling particular aspects of the web, such as the ex-
ploitation of hypertext and not being fooled by site providers manipulating
page content in an attempt to boost their search engine rankings, given the
commercial importance of the web. We focus on all these issues in Chap-
ters 19–21. At the other extreme is personal information retrieval. In the last
few years, consumer operating systems have integrated information retrieval
(such as Apple’s Mac OS X Spotlight or Windows Vista’s Instant Search).
Email programs usually not only provide search but also text classification:
they at least provide a spam (junk mail) filter, and commonly also provide
either manual or automatic means for classifying mail so that it can be placed
directly into particular folders. Distinctive issues here include handling the
broad range of document types on a typical personal computer, and mak-
ing the search system maintenance free and sufficiently lightweight in terms
of startup, processing, and disk space usage that it can run on one machine
without annoying its owner. In between is the space of enterprise, institutional,
and domain-specific search, where retrieval might be provided for collections
such as a corporation’s internal documents, a database of patents, or research
articles on biochemistry. In this case, the documents are typically stored on
centralized file systems and one or a handful of dedicated machines provide
search over the collection. This book contains techniques of value over this
whole spectrum, but our coverage of some aspects of parallel and distributed
search in web-scale search systems is comparatively light owing to the rel-
atively small published literature on the details of such systems. However,
outside of a handful of web search companies, a software developer is most
likely to encounter the personal search and enterprise scenarios.

In this chapter, we begin with a very simple example of an IR problem,
and introduce the idea of a term-document matrix (Section 1.1) and the
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central inverted index data structure (Section 1.2). We then examine the Boo-
lean retrieval model and how Boolean queries are processed (Sections 1.3
and 1.4).

1.1 An example information retrieval problem

A fat book that many people own is Shakespeare’s Collected Works. Suppose
you wanted to determine which plays of Shakespeare contain the words
Brutus and Caesar and not Calpurnia. One way to do that is to start at the
beginning and to read through all the text, noting for each play whether
it contains Brutus and Caesar and excluding it from consideration if it con-
tains Calpurnia. The simplest form of document retrieval is for a computer
to do this sort of linear scan through documents. This process is commonly
referred to as grepping through text, after the Unix command grep, whichgrep

performs this process. Grepping through text can be a very effective process,
especially given the speed of modern computers, and often allows useful
possibilities for wildcard pattern matching through the use of regular expres-
sions. With modern computers, for simple querying of modest collections
(the size of Shakespeare’s Collected Works is a bit under one million words of
text in total), you really need nothing more.

But for many purposes, you do need more:

1. To process large document collections quickly. The amount of online data
has grown at least as quickly as the speed of computers, and we would
now like to be able to search collections that total in the order of billions
to trillions of words.

2. To allow more flexible matching operations. For example, it is impractical
to perform the query Romans near countrymen with grep, where near
might be defined as “within 5 words” or “within the same sentence.”

3. To allow ranked retrieval. In many cases, you want the best answer to an
information need among many documents that contain certain words.

The way to avoid linearly scanning the texts for each query is to index theindex

documents in advance. Let us stick with Shakespeare’s Collected Works, and use
it to introduce the basics of the Boolean retrieval model. Suppose we record
for each document – here a play of Shakespeare’s – whether it contains each
word out of all the words Shakespeare used (Shakespeare used about 32,000
different words). The result is a binary term-document incidence matrix, as inincidence

matrix Figure 1.1. Terms are the indexed units (further discussed in Section 2.2); they
are usually words, and for the moment you can think of them as words, butterm

the information retrieval literature normally speaks of terms because some of
them, such as perhaps I-9 or Hong Kong are not usually thought of as words.
Now, depending on whether we look at the matrix rows or columns, we can
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Antony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the play in column d
contains the word in row t, and is 0 otherwise.

have a vector for each term, which shows the documents it appears in, or a
vector for each document, showing the terms that occur in it.2

To answer the query Brutus and Caesar and not Calpurnia, we take the
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a
bitwise and:

110100 and 110111 and 101111 = 100100

The answers for this query are thus Antony and Cleopatra and Hamlet (Fig-
ure 1.2).

The Boolean retrieval model is a model for information retrieval in which we
Boolean

retrieval
model

can pose any query which is in the form of a Boolean expression of terms,
that is, in which terms are combined with the operators and, or, and not.
The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the
opportunity to introduce some terminology and notation. Suppose we have
N = 1 million documents. By documents we mean whatever units we havedocument

decided to build a retrieval system over. They might be individual memos
or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We
refer to the group of documents over which we perform retrieval as the (doc-
ument) collection. It is sometimes also referred to as a corpus (a body of texts).collection

Suppose each document is about 1,000 words long (2–3 book pages). If wecorpus

assume an average of 6 bytes per word including spaces and punctuation,
then this is a document collection about 6 gigabytes (GB) in size. Typically,
there might be about M = 500,000 distinct terms in these documents. There
is nothing special about the numbers we have chosen, and they might vary
by an order of magnitude or more, but they give us some idea of the dimen-
sions of the kinds of problems we need to handle. We will discuss and model
these size assumptions in Section 5.1 (page 79).

Our goal is to develop a system to address the ad hoc retrieval task. This isad hoc
retrieval the most standard IR task. In it, a system aims to provide documents from

2 Formally, we take the transpose of the matrix to be able to get the terms as column vectors.
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Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

Figure 1.2 Results from Shakespeare for the query Brutus and Caesar and not Calpurnia.

within the collection that are relevant to an arbitrary user information need,
communicated to the system by means of a one-off, user-initiated query. An
information need is the topic about which the user desires to know more, andinformation

need is differentiated from a query, which is what the user conveys to the com-
puter in an attempt to communicate the information need. A document isquery

relevant if it is one that the user perceives as containing information of valuerelevance

with respect to their personal information need. Our example above was
rather artificial in that the information need was defined in terms of par-
ticular words, whereas, usually a user is interested in a topic like “pipeline
leaks” and would like to find relevant documents regardless of whether they
precisely use those words or express the concept with other words such as
pipeline rupture. To assess the effectiveness of an IR system (the quality of itseffectiveness

search results), a user usually wants to know two key statistics about the
system’s returned results for a query:

Precision: What fraction of the returned results are relevant to the informa-precision

tion need?
Recall: What fraction of the relevant documents in the collection were re-recall

turned by the system?

Detailed discussion of relevance and evaluation measures including preci-
sion and recall is found in Chapter 8.

We now cannot build a term-document matrix in a naive way. A 500K ×
1M matrix has half-a-trillion 0’s and 1’s – too many to fit in a computer’s
memory. But the crucial observation is that the matrix is extremely sparse,
that is, it has few nonzero entries. Because each document is 1,000 words
long, the matrix has no more than one billion 1’s, so a minimum of 99.8% of
the cells are zero. A much better representation is to record only the things
that do occur, that is, the 1 positions.

This idea is central to the first major concept in information retrieval,
the inverted index. The name is actually redundant: an index always mapsinverted

index back from terms to the parts of a document where they occur. Nevertheless,
inverted index, or sometimes inverted file, has become the standard term in



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

6 Boolean retrieval

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept in memory, with
pointers to each postings list, which is stored on disk.

IR.3 The basic idea of an inverted index is shown in Figure 1.3. We keep a
dictionary of terms (sometimes also referred to as a vocabulary or lexicon; indictionary

vocabulary this book, we use dictionary for the data structure and vocabulary for the set of
lexicon terms). Then, for each term, we have a list that records which documents the

term occurs in. Each item in the list – which records that a term appeared in
a document (and, later, often, the positions in the document) – is convention-
ally called a posting.4 The list is then called a postings list (or inverted list),posting

postings list and all the postings lists taken together are referred to as the postings. The
postings dictionary in Figure 1.3 has been sorted alphabetically and each postings list

is sorted by document ID. We see why this is useful in Section 1.3; later, we
also consider alternatives to doing this (Section 7.1.5).

1.2 A first take at building an inverted index

To gain the speed benefits of indexing at retrieval time, we have to build the
index in advance. The major steps in this are:

1. Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2. Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Some IR researchers prefer the term inverted file, but expressions like index construction and
index compression are much more common than inverted file construction and inverted file com-
pression. For consistency, we use (inverted) index throughout this book.

4 In a (nonpositional) inverted index, a posting is just a document ID, but it is inherently asso-
ciated with a term, via the postings list it is placed on; sometimes we will also talk of a (term,
docID) pair as a posting.
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3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms:

friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We define and discuss the earlier stages of processing, that is, steps 1–3, in
Section 2.2. Until then you can think of tokens and normalized tokens as also
loosely equivalent to words. Here, we assume that the first three steps have
already been done, and we examine building a basic inverted index by sort-
based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-docID

struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized to-
kens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listsorting

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Because a term generally occurs in a number of doc-
uments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is heredocument

frequency also the length of each postings list). This information is not vital for a basic
Boolean search engine, but it allows us to improve the efficiency of the search
engine at query time, and it is a statistic later used in many ranked retrieval
models. The postings are secondarily sorted by docID. This provides the ba-
sis for efficient query processing. This inverted index structure is essentially
without rival as the most efficient structure for supporting ad hoc text search.

In the resulting index, we pay for storage of both the dictionary and the
postings lists. The latter are much larger, but the dictionary is commonly kept
in memory, and postings lists are normally kept on disk, so the size of each is
important. In Chapter 5, we examine how each can be optimized for storage
and access efficiency. What data structure should be used for a postings list?
A fixed length array would be wasteful; some words occur in many docu-
ments, and others in very few. For an in-memory postings list, two good al-
ternatives are singly linked lists or variable length arrays. Singly linked lists al-
low cheap insertion of documents into postings lists (following updates, such
as when recrawling the web for updated documents), and naturally extend

5 Unix users can note that these steps are similar to use of the sort and then uniq commands.
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Doc 1 Doc 2
I did enact Julius Caesar: I was
killed i’ the Capitol; Brutus killed
me.

So let it be with Caesar. The noble
Brutus hath told you Caesar was
ambitious:

term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists
ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Figure 1.4 Building an index by sorting and grouping. The sequence of terms in each docu-
ment, tagged by their documentID (left) is sorted alphabetically (middle). Instances of the same
term are then grouped by word and then by documentID. The terms and documentIDs are
then separated out (right). The dictionary stores the terms, and has a pointer to the postings
list for each term. It commonly also stores other summary information such as, here, the doc-
ument frequency of each term. We use this information for improving query time efficiency
and, later, for weighting in ranked retrieval models. Each postings list stores the list of docu-
ments in which a term occurs, and may store other information such as the term frequency (the
frequency of each term in each document) or the position(s) of the term in each document.
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to more advanced indexing strategies such as skip lists (Section 2.3), which
require additional pointers. Variable length arrays win in space requirements
by avoiding the overhead for pointers and in time requirements because their
use of contiguous memory increases speed on modern processors with mem-
ory caches. Extra pointers can in practice be encoded into the lists as offsets.
If updates are relatively infrequent, variable length arrays are more compact
and faster to traverse. We can also use a hybrid scheme, with a linked list of
fixed length arrays for each term. When postings lists are stored on disk, they
are stored (perhaps compressed) as a contiguous run of postings without ex-
plicit pointers (as in Figure 1.3), so as to minimize the size of the postings list
and the number of disk seeks to read a postings list into memory.

? Exercise 1.1 [	] Draw the inverted index that would be built for the following
document collection. (See Figure 1.3 for an example.)
Doc 1 new home sales top forecasts
Doc 2 home sales rise in july
Doc 3 increase in home sales in july
Doc 4 july new home sales rise

Exercise 1.2 [	] Consider these documents:
Doc 1 breakthrough drug for schizophrenia
Doc 2 new schizophrenia drug
Doc 3 new approach for treatment of schizophrenia
Doc 4 new hopes for schizophrenia patients

a. Draw the term-document incidence matrix for this document collec-
tion.
b. Draw the inverted index representation for this collection, as in Fig-
ure 1.3 (page 6).

Exercise 1.3 [	] For the document collection shown in Exercise 1.2, what are
the returned results for these queries?

a. schizophrenia and drug

b. for and not (drug or approach)

1.3 Processing Boolean queries

How do we process a query using an inverted index and the basic Boolean
retrieval model? Consider processing the simple conjunctive query:

simple
conjunctive

queries
(1.1) Brutus and Calpurnia

over the inverted index partially shown in Figure 1.3 (page 6). We:

1. Locate Brutus in the dictionary.
2. Retrieve its postings.
3. Locate Calpurnia in the dictionary.
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Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Figure 1.5 Intersecting the postings lists for Brutus and Calpurnia from Figure 1.3.

4. Retrieve its postings.
5. Intersect the two postings lists, as shown in Figure 1.5.

The intersection operation is the crucial one: We need to efficiently intersectpostings list
intersection postings lists so as to be able to quickly find documents that contain both

terms. (This operation is sometimes referred to as merging postings lists, thispostings
merge slightly counterintuitive name reflects using the term merge algorithm for a

general family of algorithms that combine multiple sorted lists by inter-
leaved advancing of pointers through each; here we are merging the lists
with a logical and operation.)

There is a simple and effective method of intersecting postings lists using
the merge algorithm (see Figure 1.6): We maintain pointers into both lists and
walk through the two postings lists simultaneously, in time linear in the to-
tal number of postings entries. At each step, we compare the docID pointed
to by both pointers. If they are the same, we put that docID in the results
list, and advance both pointers. Otherwise we advance the pointer pointing
to the smaller docID. If the lengths of the postings lists are x and y, the in-
tersection takes O(x + y) operations. Formally, the complexity of querying
is �(N), where N is the number of documents in the collection.6 Our index-
ing methods gain us just a constant, not a difference in � time complexity
compared with a linear scan, but in practice the constant is huge. To use this
algorithm, it is crucial that postings be sorted by a single global ordering.
Using a numeric sort by docID is one simple way to achieve this.

We can extend the intersection operation to process more complicated
queries like:

(1.2) (Brutus or Caesar) and not Calpurnia

Query optimization is the process of selecting how to organize the work of an-query
optimization swering a query so that the least total amount of work needs to be done by

the system. A major element of this for Boolean queries is the order in which
postings lists are accessed. What is the best order for query processing? Con-
sider a query that is an and of t terms, for instance:

(1.3) Brutus and Caesar and Calpurnia

6 The notation �(·) is used to express an asymptotically tight bound on the complexity of
an algorithm. Informally, this is often written as O(·), but this notation really expresses an
asymptotic upper bound, which need not be tight (Cormen et al. 1990).
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Intersect(p1, p2)
1 answer ← 〈 〉
2 while p1 �= nil and p2 �= nil
3 do if doc I D(p1) = doc I D(p2)
4 then Add(answer, doc I D(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if doc I D(p1) < doc I D(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2.

For each of the t terms, we need to get its postings, then and them together.
The standard heuristic is to process terms in order of increasing document
frequency; if we start by intersecting the two smallest postings lists, then all
intermediate results must be no bigger than the smallest postings list, and we
are therefore likely to do the least amount of total work. So, for the postings
lists in Figure 1.3 (page 6), we execute the above query as:

(1.4) (Calpurnia and Brutus) and Caesar

This is a first justification for keeping the frequency of terms in the dictionary;
it allows us to make this ordering decision based on in-memory data before
accessing any postings list.

Consider now the optimization of more general queries, such as:

(1.5) (madding or crowd) and (ignoble or strife) and (killed or slain)

As before, we get the frequencies for all terms, and we can then (conser-
vatively) estimate the size of each or by the sum of the frequencies of its
disjuncts. We can then process the query in increasing order of the size of
each disjunctive term.

For arbitrary Boolean queries, we have to evaluate and temporarily store
the answers for intermediate expressions in a complex expression. However,
in many circumstances, either because of the nature of the query language,
or just because this is the most common type of query that users submit, a
query is purely conjunctive. In this case, rather than viewing merging post-
ings lists as a function with two inputs and a distinct output, it is more ef-
ficient to intersect each retrieved postings list with the current intermediate
result in memory, where we initialize the intermediate result by loading the
postings list of the least frequent term. This algorithm is shown in Figure 1.7.
The intersection operation is then asymmetric: The intermediate results list
is in memory while the list it is being intersected with is being read from
disk. Moreover, the intermediate results list is always at least as short as the
other list, and in many cases it is orders of magnitude shorter. The postings
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Intersect(〈t1, . . . , tn〉)
1 terms ← SortByIncreasingFrequency(〈t1, . . . , tn〉)
2 result ← postings( f irst(terms))
3 terms ← rest(terms)
4 while terms �= nil and result �= nil
5 do result ← Intersect(result, postings( f irst(terms)))
6 terms ← rest(terms)
7 return result

Figure 1.7 Algorithm for conjunctive queries that returns the set of documents containing each
term in the input list of terms.

intersection can still be done by the algorithm in Figure 1.6, but when the dif-
ference between the list lengths is very large, opportunities to use alternative
techniques open up. The intersection can be calculated in place by destruc-
tively modifying or marking invalid items in the intermediate results list.
Or the intersection can be done as a sequence of binary searches in the long
postings lists for each posting in the intermediate results list. Another possi-
bility is to store the long postings list as a hashtable, so that membership of
an intermediate result item can be calculated in constant rather than linear or
log time. However, such alternative techniques are difficult to combine with
postings list compression of the sort discussed in Chapter 5. Moreover, stan-
dard postings list intersection operations remain necessary when both terms
of a query are very common.

? Exercise 1.4 [	] For the queries below, can we still run through the intersec-
tion in time O(x + y), where x and y are the lengths of the postings lists for
Brutus and Caesar? If not, what can we achieve?

a. Brutus and not Caesar

b. Brutus or not Caesar

Exercise 1.5 [	] Extend the postings merge algorithm to arbitrary Boolean
query formulas. What is its time complexity? For instance, consider:

c. (Brutus or Caesar) and not (Antony or Cleopatra)
Can we always merge in linear time? Linear in what? Can we do better
than this?

Exercise 1.6 [		] We can use distributive laws for and and or to rewrite
queries.

a. Show how to rewrite the query in Exercise 1.5 into disjunctive normal
form using the distributive laws.
b. Would the resulting query be more or less efficiently evaluated than
the original form of this query?
c. Is this result true in general or does it depend on the words and the
contents of the document collection?
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Exercise 1.7 [	] Recommend a query processing order for
d. (tangerine or trees) and (marmalade or skies) and (kaleidoscope or
eyes)

given the following postings list sizes:
Term Postings size
eyes 213312
kaleidoscope 87009
marmalade 107913
skies 271658
tangerine 46653
trees 316812

Exercise 1.8 [	] If the query is:
e. friends and romans and (not countrymen)

how could we use the frequency of countrymen in evaluating the best query
evaluation order? In particular, propose a way of handling negation in de-
termining the order of query processing.

Exercise 1.9 [		] For a conjunctive query, is processing postings lists in order
of size guaranteed to be optimal? Explain why it is, or give an example
where it is not.

Exercise 1.10 [		] Write out a postings merge algorithm, in the style of Fig-
ure 1.6 (page 11), for an x or y query.

Exercise 1.11 [		] How should the Boolean query x and not y be handled?
Why is naive evaluation of this query normally very expensive? Write out
a postings merge algorithm that evaluates this query efficiently.

1.4 The extended Boolean model versus ranked retrieval

The Boolean retrieval model contrasts with ranked retrieval models such as theranked
retrieval

models
vector space model (Section 6.3), in which users largely use free text queries,

free text
queries

that is, just typing one or more words rather than using a precise language
with operators for building up query expressions, and the system decides
which documents best satisfy the query. Despite decades of academic re-
search on the advantages of ranked retrieval, systems implementing the Boo-
lean retrieval model were the main or only search option provided by large
commercial information providers for three decades until the early 1990s
(approximately the date of arrival of the World Wide Web). However, these
systems did not have just the basic Boolean operations (and, or, and not)
that have been presented so far. A strict Boolean expression over terms with
an unordered results set is too limited for many of the information needs
that people have, and these systems implemented extended Boolean re-
trieval models by incorporating additional operators such as term proximity
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operators. A proximity operator is a way of specifying that two terms in aproximity
operator query must occur close to each other in a document, where closeness may

be measured by limiting the allowed number of intervening words or by
reference to a structural unit such as a sentence or paragraph.

✎ Example 1.1: Commercial Boolean searching: Westlaw. Westlaw (http://

www.westlaw.com/) is the largest commercial legal search service (in terms
of the number of paying subscribers), with over half a million subscribers
performing millions of searches a day over tens of terabytes of text data.
The service was started in 1975. In 2005, Boolean search (called Terms and
Connectors by Westlaw) was still the default, and used by a large percent-
age of users, although ranked free text querying (called Natural Language
by Westlaw) was added in 1992. Here are some example Boolean queries
on Westlaw:

Information need: Information on the legal theories involved in preventing
the disclosure of trade secrets by employees formerly employed by a com-
peting company.
Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to access a
workplace.
Query: disab! /p access! /s work-site work-place (employment /3 place)

Information need: Cases about a host’s responsibility for drunk guests.
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Note the long, precise queries and the use of proximity operators, both
uncommon in web search. Submitted queries average about ten words in
length. Unlike web search conventions, a space between words represents
disjunction (the tightest binding operator), & is and and /s, /p, and /k
ask for matches in the same sentence, same paragraph or within k words
respectively. Double quotes give a phrase search (consecutive words); see
Section 2.4 (page 36). The exclamation mark (!) gives a trailing wildcard
query (see Section 3.2, page 48); thus liab! matches all words starting with
liab. Additionally work-site matches any of worksite, work-site or work site;
see Section 2.2.1. Typical expert queries are usually carefully defined and
incrementally developed until they obtain what look to be good results to
the user.

Many users, particularly professionals, prefer Boolean query models.
Boolean queries are precise: A document either matches the query or it
does not. This offers the user greater control and transparency over what
is retrieved. And some domains, such as legal materials, allow an effec-
tive means of document ranking within a Boolean model: Westlaw re-
turns documents in reverse chronological order, which is in practice quite
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effective. In 2007, the majority of law librarians still seem to recommend
terms and connectors for high recall searches, and the majority of legal
users think they are getting greater control by using them. However, this
does not mean that Boolean queries are more effective for professional
searchers. Indeed, experimenting on a Westlaw subcollection, Turtle (1994)
found that free text queries produced better results than Boolean queries
prepared by Westlaw’s own reference librarians for the majority of the
information needs in his experiments. A general problem with Boolean
search is that using and operators tends to produce high precision but
low recall searches, while using or operators gives low precision but high
recall searches, and it is difficult or impossible to find a satisfactory middle
ground.

In this chapter, we have looked at the structure and construction of a basic
inverted index, comprising a dictionary and postings lists. We introduced the
Boolean retrieval model, and examined how to do efficient retrieval via linear
time merges and simple query optimization. In Chapters 2–7, we consider in
detail richer query models and the sort of augmented index structures that
are needed to handle them efficiently. Here we just mention a few of the main
additional things we would like to be able to do.

1. We would like to better determine the set of terms in the dictionary and
to provide retrieval that is tolerant to spelling mistakes and inconsistent
choice of words.

2. It is often useful to search for compounds or phrases that denote a concept
such as “operating system.” As the Westlaw examples show, we might also
wish to do proximity queries such as Gates near Microsoft. To answer such
queries, the index has to be augmented to capture the proximities of terms
in documents.

3. A Boolean model only records term presence or absence, but often we
would like to accumulate evidence, giving more weight to documents that
have a term several times as opposed to ones that contain it only once. To
be able to do this we need term frequency information (the number of timesterm

frequency a term occurs in a document) in postings lists.
4. Boolean queries just retrieve a set of matching documents, but commonly

we wish to have an effective method to order (or rank) the returned re-
sults. This requires having a mechanism for determining a document score
which encapsulates how good a match a document is for a query.

With these additional ideas, we will have seen most of the basic technol-
ogy that supports ad hoc searching over unstructured information. Ad hoc
searching over documents has recently conquered the world, powering not
only web search engines but the kind of unstructured search that lies behind
the large eCommerce web sites. Although the main web search engines differ
by emphasizing free text querying, most of the basic issues and technologies
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of indexing and querying remain the same, as we will see in later chapters.
Moreover, over time, web search engines have added at least partial imple-
mentations of some of the most popular operators from extended Boolean
models: phrase search is especially popular and most have a very partial im-
plementation of Boolean operators. Nevertheless, although these options are
liked by expert searchers, they are little used by most people and are not the
main focus in work on trying to improve web search engine performance.

? Exercise 1.12 [	] Write a query using Westlaw syntax that would find any of
the words professor, teacher, or lecturer in the same sentence as a form of the
verb explain.

Exercise 1.13 [	] Try using the Boolean search features on a couple of major
web search engines. For instance, choose a word, such as burglar, and sub-
mit the queries (i) burglar, (ii) burglar and burglar, and (iii) burglar or burglar.
Look at the estimated number of results and top hits. Do they make sense
in terms of Boolean logic? Often they haven’t for major search engines.
Can you make sense of what is going on? What about if you try different
words? For example, query for (i) knight, (ii) conquer, and then (iii) knight

OR conquer. What bound should the number of results from the first two
queries place on the third query? Is this bound observed?

1.5 References and further reading

The practical pursuit of computerized information retrieval began in the late
1940s (Cleverdon 1991; Liddy 2005). A great increase in the production of
scientific literature, much in the form of less formal technical reports rather
than traditional journal articles, coupled with the availability of computers,
led to interest in automatic document retrieval. However, in those days, doc-
ument retrieval was always based on author, title, and keywords; full-text
search came much later.

The article by Bush (1945) provided lasting inspiration for the new field:

Consider a future device for individual use, which is a sort of mecha-
nized private file and library. It needs a name, and, to coin one at random,
‘memex’ will do. A memex is a device in which an individual stores all
his books, records, and communications, and which is mechanized so that
it may be consulted with exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.

The term information retrieval was coined by Calvin Mooers in 1948/1950
(Mooers 1950).

In 1958, much newspaper attention was paid to demonstrations at a confer-
ence (see Taube and Wooster 1958) of IBM “auto-indexing” machines, based
primarily on the work of H. P. Luhn. Commercial interest quickly gravitated
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toward Boolean retrieval systems, but the early years saw a heady debate
over various disparate technologies for retrieval systems. For example, Moo-
ers (1961) dissented:

It is a common fallacy, underwritten at this date by the investment of sev-
eral million dollars in a variety of retrieval hardware, that the algebra of
George Boole (1847) is the appropriate formalism for retrieval system de-
sign. This view is as widely and uncritically accepted as it is wrong.

The observation of and versus or giving you opposite extremes in a pre-
cision/recall tradeoff, but not the middle ground comes from (Lee and Fox
1988).

The book (Witten et al. 1999) is the standard reference for an in-depth com-
parison of the space and time efficiency of the inverted index versus other
possible data structures; a more succinct and up-to-date presentation ap-
pears in Zobel and Moffat (2006). We further discuss several approaches in
Chapter 5.

Friedl (2006) covers the practical usage of regular expressions for searching.regular
expressions The underlying computer science appears in (Hopcroft et al. 2000).


