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21Link analysis

The analysis of hyperlinks and the graph structure of the Web has been in-
strumental in the development of web search. In this chapter, we focus on
the use of hyperlinks for ranking web search results. Such link analysis is
one of many factors considered by web search engines in computing a com-
posite score for a web page on any given query. We begin by reviewing some
basics of the Web as a graph in Section 21.1, then proceed to the technical
development of the elements of link analysis for ranking.

Link analysis for web search has intellectual antecedents in the field of cita-
tion analysis, aspects of which overlap with an area known as bibliometrics.
These disciplines seek to quantify the influence of scholarly articles by ana-
lyzing the pattern of citations among them. Much as citations represent the
conferral of authority from a scholarly article to others, link analysis on the
Web treats hyperlinks from a web page to another as a conferral of authority.
Clearly, not every citation or hyperlink implies such authority conferral; for
this reason, simply measuring the quality of a web page by the number of
in-links (citations from other pages) is not robust enough. For instance, one
may contrive to set up multiple web pages pointing to a target web page,
with the intent of artificially boosting the latter’s tally of in-links. This phe-
nomenon is referred to as link spam. Nevertheless, the phenomenon of cita-
tion is prevalent and dependable enough that it is feasible for web search
engines to derive useful signals for ranking from more sophisticated link
analysis. Link analysis also proves to be a useful indicator of what page(s)
to crawl next while crawling the web; this is done by using link analysis to
guide the priority assignment in the front queues of Chapter 20.

Section 21.1 develops the basic ideas underlying the use of the web graph
in link analysis. Sections 21.2 and 21.3 then develop two distinct methods for
link analysis, PageRank and HITS.
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21.1 The Web as a graph

Recall the notion of the web graph from Section 19.2.1 and particularly Fig-
ure 19.2. Our study of link analysis builds on two intuitions.

1. The anchor text pointing to page B is a good description of page B.
2. The hyperlink from A to B represents an endorsement of page B, by the

creator of page A. This is not always the case; for instance, many links
among pages within a single website stem from the user of a common
template. For instance, most corporate websites have a pointer from ev-
ery page to a page containing a copyright notice – this is clearly not an
endorsement. Accordingly, implementations of link analysis algorithms
typically discount such “internal” links.

21.1.1 Anchor text and the web graph

The following fragment of HTML code from a web page shows a hyperlink
pointing to the home page of the Journal of the ACM:

<a href="http://www.acm.org/jacm/">Journal of the ACM.</a>

In this case, the link points to the page www.acm.org/jacm/ and the anchor
text is Journal of the ACM. Clearly, in this example the anchor is descriptive of
the target page. But then the target page (B = http://www.acm.org/jacm/)
itself contains the same description as well as considerable additional infor-
mation on the journal. So what use is the anchor text?

The Web is full of instances where the page B does not provide an accu-
rate description of itself. In many cases, this is a matter of how the publish-
ers of page B choose to present themselves; this is especially common with
corporate web pages, where a web presence is a marketing statement. For
example, at the time of the writing of this book the home page of the IBM
corporation (www.ibm.com) did not contain the term computer anywhere in
its HTML code, despite the fact that IBM is widely viewed as the world’s
largest computer maker. Similarly, the HTML code for the home page of Ya-
hoo! (www.yahoo.com) does not at this time contain the word portal.

Thus, there is often a gap between the terms in a web page and how web
users would describe that web page. Consequently, web searchers need not
use the terms in a page to query for it. In addition, many web pages are rich
in graphics and images, and/or embed their text in these images; in such
cases, the HTML parsing performed when crawling will not extract text that
is useful for indexing these pages. The “standard IR” approach to this would
be to use the methods outlined in Chapter 9 and Section 12.4. The insight
behind anchor text is that such methods can be supplanted by anchor text,
thereby tapping the power of the community of web page authors.
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The fact that the anchors of many hyperlinks pointing to www.ibm.com

include the word computer can be exploited by web search engines. For in-
stance, the anchor text terms can be included as terms under which to index
the target web page. Thus, the postings for the term computer would include
the document www.ibm.com and that for the term portal would include the
document www.yahoo.com, using a special indicator to show that these terms
occur as anchor (rather than in-page) text. As with in-page terms, anchor text
terms are generally weighted based on frequency, with a penalty for terms
that occur very often (the most common terms in anchor text across the Web
are Click and here) using methods very similar to idf. The actual weighting of
terms is determined by machine-learned scoring, as in Section 15.4.1; current
web search engines appear to assign a substantial weighting to anchor text
terms.

The use of anchor text has some interesting side effects. Searching for big

blue on most web search engines returns the home page of the IBM corpo-
ration as the top hit; this is consistent with the popular nickname that many
people use to refer to IBM. On the other hand, there have been (and con-
tinue to be) many instances where derogatory anchor text such as evil empire

leads to somewhat unexpected results on querying for these terms on web
search engines. This phenomenon has been exploited in orchestrated cam-
paigns against specific sites. Such orchestrated anchor text may be a form
of spamming; a website can create misleading anchor text pointing to itself
to boost its ranking on selected query terms. Detecting and combating such
systematic abuse of anchor text is another form of spam detection that web
search engines perform.

The window of text surrounding anchor text (sometimes referred to as ex-
tended anchor text) is often usable in the same manner as anchor text itself;
consider for instance the fragment of web text there is good discussion

of vedic scripture <a>here</a>. This has been considered in a number
of settings and the useful width of this window has been studied; see Sec-
tion 21.4 for references.

? Exercise 21.1 Is it always possible to follow directed edges (hyperlinks) in
the web graph from any node (web page) to any other? Why or why not?

Exercise 21.2 Find an instance of misleading anchor text on the Web.

Exercise 21.3 Given the collection of anchor text phrases for a web page x,
suggest a heuristic for choosing one term or phrase from this collection
that is most descriptive of x.

Exercise 21.4 Does your heuristic in the previous exercise take into account
a single domain D repeating anchor text for x from multiple pages in D?
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Figure 21.1 The random surfer at node A proceeds with probability 1/3 to each of B, C, and D.

21.2 PageRank

We now focus on scoring and ranking measures derived from the link struc-
ture alone. Our first technique for link analysis assigns to every node in the
web graph a numerical score between 0 and 1, known as its PageRank. ThePageRank

PageRank of a node depends on the link structure of the web graph. Given
a query, a web search engine computes a composite score for each web page
that combines hundreds of features such as cosine similarity (Section 6.3)
and term proximity (Section 7.2.2), together with the PageRank score. This
composite score, developed using the methods of Section 15.4.1, is used to
provide a ranked list of results for the query.

Consider a random surfer who begins at a web page (a node of the web
graph) and executes a random walk on the Web as follows. At each time
step, the surfer proceeds from his current page A to a randomly chosen web
page that A hyperlinks to. Figure 21.1 shows the surfer at a node A, out of
which there are three hyperlinks to nodes B, C, and D; the surfer proceeds at
the next time step to one of these three nodes, with equal probabilities 1/3.

As the surfer proceeds in this random walk from node to node, he visits
some nodes more often than others; intuitively, these are nodes with many
links coming in from other frequently visited nodes. The idea behind Page-
Rank is that pages visited more often in this walk are more important.

What if the current location of the surfer, the node A, has no out-links?
To address this we introduce an additional operation for our random surfer:
the teleport operation. In the teleport operation, the surfer jumps from a nodeteleport

to any other node in the web graph. This could happen because he types
an address into the URL bar of his browser. The destination of a teleport
operation is modeled as being chosen uniformly at random from all web
pages. In other words, if N is the total number of nodes in the web graph,1

the teleport operation takes the surfer to each node with probability 1/N. The
surfer would also teleport to his present position with probability 1/N.

In assigning a PageRank score to each node of the web graph, we use the
teleport operation in two ways: (i) When at a node with no out-links, the
surfer invokes the teleport operation. (ii) At any node that has outgoing links,

1 This is consistent with our usage of N for the number of documents in the collection.
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the surfer invokes the teleport operation with probability 0 < α < 1 and the
standard random walk (follow an out-link chosen uniformly at random as in
Figure 21.1) with probability 1 − α, where α is a fixed parameter chosen in
advance. Typically, α might be 0.1.

In Section 21.2.1, we will use the theory of Markov chains to argue that
when the surfer follows this combined process (random walk plus teleport)
he visits each node v of the web graph a fixed fraction of the time π (v) that
depends on (i) the structure of the web graph and (ii) the value of α. We call
this value π (v) the PageRank of v and will show how to compute this value
in Section 21.2.2.

21.2.1 Markov chains

A Markov chain is a discrete-time stochastic process, a process that occurs in
a series of time steps in each of which a random choice is made. A Markov
chain consists of N states. Each web page will correspond to a state in the
Markov chain we will formulate.

A Markov chain is characterized by an N × N transition probability matrix P
each of whose entries is in the interval [0, 1]; the entries in each row of P add
up to 1. The Markov chain can be in one of the N states at any given time-step;
then, the entry Pi j tells us the probability that the state at the next time-step
is j , conditioned on the current state being i . Each entry Pi j is known as a
transition probability and depends only on the current state i ; this is known
as the Markov property. Thus, by the Markov property,

∀i, j, Pi j ∈ [0, 1]

and

∀i,
N∑

j=1

Pi j = 1.(21.1)

A matrix with non-negative entries that satisfies Equation (21.1) is known
as a stochastic matrix. A key property of a stochastic matrix is that it has astochastic

matrix principal left eigenvector corresponding to its largest eigenvalue, which is 1.

principal
left

eigenvector

In a Markov chain, the probability distribution of next states for a Markov
chain depends only on the current state, and not on how the Markov chain
arrived at the current state. Figure 21.2 shows a simple Markov chain with
three states. From the middle state A, we proceed with (equal) probabilities
of 0.5 to either B or C. From either B or C, we proceed with probability 1 to
A. The transition probability matrix of this Markov chain is then⎛⎜⎝ 0 0.5 0.5

1 0 0
1 0 0

⎞⎟⎠
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Figure 21.2 A simple Markov chain with three states; the numbers on the links indicate the
transition probabilities.

A Markov chain’s probability distribution over its states may be viewed as
a probability vector, a vector all of whose entries are in the interval [0, 1], andprobability

vector the entries add up to 1. An N-dimensional probability vector each of whose
components corresponds to one of the N states of a Markov chain can be
viewed as a probability distribution over its states. For our simple Markov
chain of Figure 21.2, the probability vector would have three components
that sum to 1.

We can view a random surfer on the web graph as a Markov chain, with
one state for each web page, and each transition probability representing the
probability of moving from one web page to another. The teleport operation
contributes to these transition probabilities. The adjacency matrix A of the
web graph is defined as follows: if there is a hyperlink from page i to page
j , then Ai j = 1, otherwise Ai j = 0. We can readily derive the transition prob-
ability matrix P for our Markov chain from the N × N matrix A. If a row of
A has no 1’s, then devide each element by 1/N. For all other rows proceed as
follows:

1. Divide each 1 in A by the number of 1s in its row. Thus, if there is a row
with three 1s, then each of them is replaced by 1/3.

2. Multiply the resulting matrix by 1 − α.
3. Add α/N to every entry of the resulting matrix, to obtain P .

We can depict the probability distribution of the surfer’s position at any
time by a probability vector �x. At t = 0 the surfer may begin at a state whose
corresponding entry in �x is 1 while all others are zero. By definition, the
surfer’s distribution at t = 1 is given by the probability vector �xP ; at t = 2
by (�xP)P = �xP2, and so on. We will detail this process in Section 21.2.2. We
can thus compute the surfer’s distribution over the states at any time, given
only the initial distribution and the transition probability matrix P .

If a Markov chain is allowed to run for many time steps, each state is vis-
ited at a (different) frequency that depends on the structure of the Markov
chain. In our running analogy, the surfer visits certain web pages (say, pop-
ular news home pages) more often than other pages. We now make this in-
tuition precise, establishing conditions under which such the visit frequency
converges to fixed, steady-state quantity. Following this, we set the Page-
Rank of each node v to this steady-state visit frequency and show how it can
be computed.
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Definition: A Markov chain is said to be ergodic if there exists a positiveErgodic
Markov

Chain
integer T0 such that for all pairs of states i, j in the Markov chain, if it is
started at time 0 in state i then for all t > T0, the probability of being in state
j at time t is greater than 0.

For a Markov chain to be ergodic, two technical conditions are required
of the its states and the nonzero transition probabilities; these conditions are
known as irreducibility and aperiodicity. Informally, the first ensures that there
is a sequence of transitions of nonzero probability from any state to any other,
while the latter ensures that the states are not partitioned into sets such that
all state transitions occur cyclically from one set to another.

Theorem 21.1. For any ergodic Markov chain, there is a unique steady-state prob-steady-state

ability vector �π that is the principal left eigenvector of P, such that if η(i, t) is the
number of visits to state i in t steps, then

lim
t→∞

η(i, t)
t

= π (i),

where π (i) > 0 is the steady-state probability for state i .

It follows from Theorem 21.1 that the random walk with teleporting results
in a unique distribution of steady-state probabilities over the states of the in-
duced Markov chain. This steady-state probability for a state is the PageRank
of the corresponding web page.

21.2.2 The PageRank computation

How do we compute PageRank values? Recall the definition of a left eigen-
vector from Equation (18.2) the left eigenvectors of the transition probability
matrix P are N-vectors �π such that

�π P = λ�π.(21.2)

The N entries in the principal eigenvector �π are the steady-state proba-
bilities of the random walk with teleporting, and thus the PageRank values
for the corresponding web pages. We may interpret Equation (21.2) as fol-
lows: If �π is the probability distribution of the surfer across the web pages,
he remains in the steady-state distribution �π . Given that �π is the steady-state
distribution, we have that π P = 1π , so 1 is an eigenvalue of P. Thus, if we
were to compute the principal left eigenvector of the matrix P – the one with
eigenvalue 1 – we would have computed the PageRank values.

There are many algorithms available for computing left eigenvectors; the
references at the end of Chapter 18 and the present chapter are a guide to
these. We give here a rather elementary method, sometimes known as power
iteration. If �x is the initial distribution over the states, then the distribution
at time t is �xPt. As t grows large, we would expect that the distribution
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�x0 1 0 0
�x1 1/6 2/3 1/6
�x2 1/3 1/3 1/3
�x3 1/4 1/2 1/4
�x4 7/24 5/12 7/24

. . . · · · · · · · · ·
�x 5/18 4/9 5/18

Figure 21.3 The sequence of probability vectors.

�xPt 2 is very similar to the distribution �xPt+1; for large t we would expect
the Markov chain to attain its steady state. By Theorem 21.1, this is inde-
pendent of the initial distribution �x. The power iteration method simulates
the surfer’s walk: Begin at a state and run the walk for a large number of
steps t, keeping track of the visit frequencies for each of the states. After a
large number of steps t, these frequencies “settle down” so that the varia-
tion in the computed frequencies is below some predetermined threshold.
We declare these tabulated frequencies to be the PageRank values.

We consider the web graph in Exercise 21.6 with α = 0.5. The transition
probability matrix of the surfer’s walk with teleportation is then

P =

⎛⎜⎝ 1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6

⎞⎟⎠ .(21.3)

Imagine that the surfer starts in state 1, corresponding to the initial proba-
bility distribution vector �x0 = (1 0 0). Then, after one step the distribution
is

�x0 P =
(

1/6 2/3 1/6
)

= �x1.(21.4)

After two steps it is

�x1 P =
(

1/6 2/3 1/6
) ⎛⎜⎝ 1/6 2/3 1/6

5/12 1/6 5/12
1/6 2/3 1/6

⎞⎟⎠ =
(

1/3 1/3 1/3
)

= �x2.(21.5)

Continuing in this fashion gives a sequence of probability vectors as shown
in Figure 21.3.

Continuing for several steps, we see that the distribution converges to the
steady state of �x = (5/18 4/9 5/18). In this simple example, we may di-
rectly calculate this steady-state probability distribution by observing the
symmetry of the Markov chain: States 1 and 3 are symmetric, as evident from
the fact that the first and third rows of the transition probability matrix in
Equation (21.3) are identical. Postulating, then, that they both have the same

2 Note that Pt represents P raised to the tth power, not the transpose of P , which is denoted
PT .
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Figure 21.4 A small web graph. Arcs are annotated with the word that occurs in the anchor text
of the corresponding link.

steady-state probability and denoting this probability by p, we know that
the steady-state distribution is of the form �π = (p 1 − 2p p). Now, using the
identity �π = �π P , we solve a simple linear equation to obtain p = 5/18 and
consequently, �π = (5/18 4/9 5/18).

The PageRank values of pages (and the implicit ordering among them)
are independent of any query a user might pose; PageRank is thus a query-
independent measure of the static quality of each web page (recall such static
quality measures from Section 7.1.4). On the other hand, the relative order-
ing of pages should, intuitively, depend on the query being served. For this
reason, search engines use static quality measures such as PageRank as just
one of many factors in scoring a web page on a query. Indeed, the relative
contribution of PageRank to the overall score may again be determined by
machine-learned scoring as in Section 15.4.1.

✎ Example 21.1: Consider the graph in Figure 21.4. For a teleportation rate
of 0.14 its (stochastic) transition probability matrix is:

0.02 0.02 0.88 0.02 0.02 0.02 0.02
0.02 0.45 0.45 0.02 0.02 0.02 0.02
0.31 0.02 0.31 0.31 0.02 0.02 0.02
0.02 0.02 0.02 0.45 0.45 0.02 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.88
0.02 0.02 0.02 0.02 0.02 0.45 0.45
0.02 0.02 0.02 0.31 0.31 0.02 0.31
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The PageRank vector of this matrix is:

�x = (0.05 0.04 0.11 0.25 0.21 0.04 0.31)(21.6)

Observe that in Figure 21.4, q2, q3, q4 and q6 are the nodes with at least
two in-links. Of these, q2 has the lowest PageRank since the random walk
tends to drift out of the top part of the graph – the walker can only return
there through teleportation.

21.2.3 Topic-specific PageRank

Thus far, we have discussed the PageRank computation with a teleport oper-
ation in which the surfer jumps to a web page chosen uniformly at random.
We now consider teleporting to a random web page chosen nonuniformly. In
doing so, we are able to derive PageRank values tailored to particular in-
terests. For instance, a sports aficionado might wish that pages on sports be
ranked higher than non-sports pages. Suppose that web pages on sports are
“near” one another in the web graph. Then, a random surfer who frequently
finds himself on random sports pages is likely (in the course of the random
walk) to spend most of his time at sports pages, so that the steady-state dis-
tribution of sports pages is boosted.

Suppose our random surfer, endowed with a teleport operation as before,
teleports to a random web page on the topic of sports instead of teleporting to a
uniformly chosen random web page. We will not focus on how we collect all
web pages on the topic of sports; in fact, we only need a nonzero subset S of
sports-related web pages, so that the teleport operation is feasible. This may
be obtained, for instance, from a manually built directory of sports pages
such as the open directory project (www.dmoz.org/) or that of Yahoo.

Provided the set S of sports-related pages is nonempty, it follows that there
is a nonempty set of web pages Y ⊇ S over which the random walk has a
steady-state distribution; let us denote this sports PageRank distribution by
�πs . For web pages not in Y, we set the PageRank values to 0. We call �πs the
topic-specific PageRank for sports.topic-specific

PageRank We do not demand that teleporting takes the random surfer to a uniformly
chosen sports page; the distribution over teleporting targets S could in fact
be arbitrary.

In like manner, we can envision topic-specific PageRank distributions for
each of several topics such as science, religion, politics, and so on. Each of
these distributions assigns to each web page a PageRank value in the interval
[0, 1). For a user interested in only a single topic from among these topics,
we may invoke the corresponding PageRank distribution when scoring and
ranking search results. This gives us the potential of considering settings in
which the search engine knows what topic a user is interested in. This may
happen because users either explicitly register their interests, or because the
system learns by observing each user’s behavior over time.
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Sports

Politics 10% teleport

Politics

6% teleport

Sports
10% teleport

4% teleport

Figure 21.5 Topic-specific PageRank. In this example we consider a user whose interests are 60%
sports and 40% politics. If the teleportation probability is 10%, this user is modeled as teleporting
6% to sports pages and 4% to politics pages.

But what if a user is known to have a mixture of interests from multi-
ple topics? For instance, a user may have an interest mixture (or profile) that
is 60% sports and 40% politics; can we compute a personalized PageRank forpersonalized

PageRank this user? At first glance, this appears daunting; how could we possibly com-
pute a different PageRank distribution for each user profile (with, potentially,
infinitely many possible profiles)? We can in fact address this provided we
assume that an individual’s interests can be well-approximated as a linear
combination of a small number of topic page distributions. A user with this
mixture of interests could teleport as follows: Determine first whether to tele-
port to the set S of known sports pages, or to the set of known politics pages.
This choice is made at random, choosing sports pages 60% of the time and
politics pages 40% of the time (Figure 21.5). Once we choose that a particular
teleport step is to (say) a random sports page, we choose a web page in S
uniformly at random to teleport to. This in turn leads to an ergodic Markov
chain with a steady-state distribution that is personalized to this user’s pref-
erences over topics (see Exercise 21.16).

Although this idea has intuitive appeal, its implementation appears cum-
bersome; it seems to demand that for each user, we compute a transition
probability matrix and compute its steady-state distribution. We are rescued
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by the fact that the evolution of the probability distribution over the states of
a Markov chain can be viewed as a linear system. In Exercise 21.16 we will
show that it is not necessary to compute a PageRank vector for every distinct
combination of user interests over topics; the personalized PageRank vec-
tor for any user can be expressed as a linear combination of the underlying
topic-specific PageRanks. For instance, the personalized PageRank vector for
the user whose interests are 60% sports and 40% politics can be computed as

0.6�πs + 0.4�πp,(21.7)

where �πs and �πp are the topic-specific PageRank vectors for sports and for
politics, respectively.

? Exercise 21.5 Write down the transition probability matrix for the example
in Figure 21.2.

Exercise 21.6 Consider a web graph with three nodes 1, 2, and 3. The
links are as follows: 1 → 2, 3 → 2, 2 → 1, 2 → 3. Write down the transi-
tion probability matrices for the surfer’s walk with teleporting, for the fol-
lowing three values of the teleport probability: (i) α = 0; (ii) α = 0.5; and
(iii) α = 1.

Exercise 21.7 A user of a browser can, in addition to clicking a hyperlink
on the page x he is currently browsing, use the back button to go back to
the page from which he arrived at x. Can such a user of back buttons be
modeled as a Markov chain? How would we model repeated invocations
of the back button?

Exercise 21.8 Consider a Markov chain with three states A, B and C, and
transition probabilities as follows. From state A, the next state is B with
probability 1. From B, the next state is either A with probability pA, or
state C with probability 1 − pA. From C the next state is A with probability
1. For what values of pA ∈ [0, 1] is this Markov chain ergodic?

Exercise 21.9 Show that for any directed graph, the Markov chain induced
by a random walk with the teleport operation is ergodic.

Exercise 21.10 Show that the PageRank of every page is at least α/N. What
does this imply about the difference in PageRank values (over the various
pages) as α becomes close to 1?

Exercise 21.11 For the data in Example 21.1, write a small routine or use
a scientific calculator to compute the PageRank values stated in Equa-
tion (21.6).

Exercise 21.12 Suppose that the web graph is stored on disk as an adjacency
list, in such a way that you may only query for the out-neighbors of pages
in the order in which they are stored. You cannot load the graph in main
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memory but you may do multiple reads over the full graph. Write the al-
gorithm for computing the PageRank in this setting.

Exercise 21.13 Recall the sets S and Y introduced near the beginning of Sec-
tion 21.2.3. How does the set Y relate to S?

Exercise 21.14 Is the set Y always the set of all web pages? Why or why not?

Exercise 21.15 [	 	 	] Is the sports PageRank of any page in S at least as large
as its PageRank?

Exercise 21.16 [	 	 	] Consider a setting where we have two topic-specific
PageRank values for each web page: a sports PageRank �πs , and a poli-
tics PageRank �πp. Let α be the (common) teleportation probability used in
computing both sets of topic-specific PageRanks. For q ∈ [0, 1], consider a
user whose interest profile is divided between a fraction q in sports and
a fraction 1 − q in politics. Show that the user’s personalized PageRank
is the steady-state distribution of a random walk in which – on a teleport
step – the walk teleports to a sports page with probability q and to a poli-
tics page with probability 1 − q .

Exercise 21.17 Show that the Markov chain corresponding to the walk in Ex-
ercise 21.16 is ergodic and hence the user’s personalized PageRank can be
obtained by computing the steady-state distribution of this Markov chain.

Exercise 21.18 Show that in the steady-state distribution of Exercise 21.17,
the steady-state probability for any web page i equals qπs(i) + (1 − q )πp(i).

21.3 Hubs and authorities

We now develop a scheme in which, given a query, every web page is as-
signed two scores. One is called its hub score and the other its authority score.hub score

authority
score

For any query, we compute two ranked lists of results rather than one. The
ranking of one list is induced by the hub scores and that of the other by the
authority scores.

This approach stems from a particular insight into the creation of web
pages, namely, that there are two primary kinds of web pages useful as re-
sults for broad-topic searches. By a broad topic search we mean an informa-
tional query such as “I wish to learn about leukemia.” There are authoritative
sources of information on the topic; in this case, the National Cancer Insti-
tute’s page on leukemia would be such a page. We will call such pages au-
thorities; in the computation we are about to describe, they are the pages that
will emerge with high authority scores.

On the other hand, there are many pages on the Web that are hand-
compiled lists of links to authoritative web pages on a specific topic. These
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hub pages are not in themselves authoritative sources of topic-specific infor-
mation, but rather compilations that someone with an interest in the topic
has spent time putting together. The approach we will take, then, is to use
these hub pages to discover the authority pages. In the computation we
now develop, these hub pages are the pages that will emerge with high hub
scores.

A good hub page is one that points to many good authorities; a good au-
thority page is one that is pointed to by many good hub pages. We thus ap-
pear to have a circular definition of hubs and authorities; we will turn this
into an iterative computation. Suppose that we have a subset of the web con-
taining good hub and authority pages, together with the hyperlinks among
them. We will iteratively compute a hub score and an authority score for ev-
ery web page in this subset, deferring the discussion of how we pick this
subset until Section 21.3.1.

For a web page v in our subset of the web, we use h(v) to denote its hub
score and a (v) its authority score. Initially, we set h(v) = a (v) = 1 for all nodes
v. We also denote by v !→ y the existence of a hyperlink from v to y. The core
of the iterative algorithm is a pair of updates to the hub and authority scores
of all pages given by Equation (21.8), which capture the intuitive notions that
good hubs point to good authorities and that good authorities are pointed to
by good hubs.

h(v) ←
∑
v !→y

a (y)(21.8)

a (v) ←
∑
y!→v

h(y).

Thus, the first line of Equation (21.8) sets the hub score of page v to the sum of
the authority scores of the pages it links to. In other words, if v links to pages
with high authority scores, its hub score increases. The second line plays the
reverse role; if page v is linked to by good hubs, its authority score increases.

What happens as we perform these updates iteratively, recomputing hub
scores, then new authority scores based on the recomputed hub scores, and
so on? Let us recast Equation (21.8) into matrix–vector form. Let �h and �a
denote the vectors of all hub and all authority scores respectively, for the
pages in our subset of the web graph. Let A denote the adjacency matrix of
the subset of the web graph that we are dealing with: A is a square matrix
with one row and one column for each page in the subset. The entry Ai j is 1
if there is a hyperlink from page i to page j , and 0 otherwise. Then, we may
write Equation (21.8)

�h ← A�a(21.9)

�a ← AT �h,
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where AT denotes the transpose of the matrix A. Now the right hand side of
each line of Equation (21.9) is a vector that is the left hand side of the other
line of Equation (21.9). Substituting these into one another, we may rewrite
Equation (21.9) as

�h ← AAT �h(21.10)

�a ← AT A�a .

Now, Equation (21.10) bears an uncanny resemblance to a pair of eigenvector
equations (Section 18.1); indeed, if we replace the ← symbols by = symbols
and introduce the (unknown) eigenvalue, the first line of Equation (21.10)
becomes the equation for the eigenvectors of AAT , and the second becomes
the equation for the eigenvectors of AT A:

�h = (1/λh)AAT �h
�a = (1/λa )AT A�a .(21.11)

Here we have used λh to denote the eigenvalue of AAT and λa to denote the
eigenvalue of AT A.

This leads to some key consequences:

1. The iterative updates in Equation (21.8) (or equivalently, Equation (21.9)),
if scaled by the appropriate eigenvalues, are equivalent to the power iter-
ation method for computing the eigenvectors of AAT and AT A. Provided
that the principal eigenvalue of AAT is unique, the iteratively computed
entries of �h and �a settle into unique steady-state values determined by the
entries of A and hence the link structure of the graph.

2. In computing these eigenvector entries, we are not restricted to using the
power iteration method; indeed, we could use any fast method for com-
puting the principal eigenvector of a stochastic matrix.

The resulting computation thus takes the following form:

1. Assemble the target subset of web pages, form the graph induced by their
hyperlinks and compute AAT and AT A.

2. Compute the principal eigenvectors of AAT and AT A to form the vector
of hub scores �h and authority scores �a .

3. Output the top-scoring hubs and the top-scoring authorities.

This method of link analysis is known as HITS, which is an acronym forHITS

hyperlink-induced topic search.

✎ Example 21.2: Assuming the query jaguar and double-weighting of
links whose anchors contain the query word, the matrix A for Figure 21.4
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is as follows:

0 0 1 0 0 0 0
0 1 1 0 0 0 0
1 0 1 2 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 2 1 0 1

The hub and authority vectors are:

�h = (0.03 0.04 0.33 0.18 0.04 0.04 0.35)

�a = (0.10 0.01 0.12 0.47 0.16 0.01 0.13)

Here, q3 is the main authority – two hubs (q2 and q6) are pointing to it via
highly weighted jaguar links.

Because the iterative updates captured the intuition of good hubs and
good authorities, the high-scoring pages we output would give us good hubs
and authorities from the target subset of web pages. In Section 21.3.1 we de-
scribe the remaining detail: How do we gather a target subset of web pages
around a topic such as leukemia?

21.3.1 Choosing the subset of the Web

In assembling a subset of web pages around a topic such as leukemia, we
must cope with the fact that good authority pages may not contain the spe-
cific query term leukemia. This is especially true, as we noted in Section 21.1.1,
when an authority page uses its web presence to project a certain market-
ing image. For instance, many pages on the IBM website are authoritative
sources of information on computer hardware, even though these pages may
not contain the term computer or hardware. However, a hub compiling com-
puter hardware resources is likely to use these terms and also link to the
relevant pages on the IBM website.

Building on these observations, the following procedure has been sug-
gested for compiling the subset of the Web for which to compute hub and
authority scores.

1. Given a query (say leukemia), use a text index to get all pages containing
leukemia. Call this the root set of pages.

2. Build the base set of pages, to include the root set as well as any page that
either links to a page in the root set, or is linked to by a page in the root
set.
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We then use the base set for computing hub and authority scores. The base
set is constructed in this manner for three reasons:

1. A good authority page may not contain the query text (such as computer

hardware).
2. If the text query manages to capture a good hub page vh in the root set,

then the inclusion of all pages linked to by any page in the root set will
capture all the good authorities linked to by vh in the base set.

3. Conversely, if the text query manages to capture a good authority page
va in the root set, then the inclusion of pages points to va will bring other
good hubs into the base set. In other words, the “expansion” of the root set
into the base set enriches the common pool of good hubs and authorities.

Running HITS across a variety of queries reveals some interesting insights
about link analysis. Frequently, the documents that emerge as top hubs and
authorities include languages other than the language of the query. These
pages were presumably drawn into the base set, following the assembly of
the root set. Thus, some elements of cross-language retrieval (where a query
in one language retrieves documents in another) are evident here; interest-
ingly, this cross-language effect resulted purely from link analysis, with no
linguistic translation taking place.

We conclude this section with some notes on implementing this algorithm.
The root set consists of all pages matching the text query; in fact, implemen-
tations (see the references in Section 21.4) suggest that it suffices to use 200 or
so web pages for the root set, rather than all pages matching the text query.
Any algorithm for computing eigenvectors may be used for computing the
hub/authority score vector. In fact, we need not compute the exact values
of these scores; it suffices to know the relative values of the scores so that
we may identify the top hubs and authorities. To this end, it is possible that
a small number of iterations of the power iteration method yields the rela-
tive ordering of the top hubs and authorities. Experiments have suggested
that in practice, about five iterations of Equation (21.8) yield fairly good re-
sults. Moreover, because the link structure of the web graph is fairly sparse
(the average web page links to about ten others), we do not perform these as
matrix-vector products but rather as additive updates as in Equation (21.8).

Figure 21.6 shows the results of running HITS on the query japan elemen-

tary schools. The figure shows the top hubs and authorities; each row lists the
title tag from the corresponding HTML page. Because the resulting string
is not necessarily in Latin characters, the resulting print is (in many cases)
a string of gibberish. Each of these corresponds to a web page that does
not use Latin characters, in this case very likely pages in Japanese. There
also appear to be pages in other non-English languages, which seems sur-
prising given that the query string is in English. In fact, this result is em-
blematic of the functioning of HITS – following the assembly of the root
set, the (English) query string is ignored. The base set is likely to contain
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Figure 21.6 A sample run of HITS on the query japan elementary schools.

pages in other languages, for instance if an English-language hub page links
to the Japanese-language home pages of Japanese elementary schools. Be-
cause the subsequent computation of the top hubs and authorities is entirely
link-based, some of these non-English pages will appear among the top hubs
and authorities.

? Exercise 21.19 If all the hub and authority scores are initialized to 1, what is
the hub/authority score of a node after one iteration?

Exercise 21.20 How would you interpret the entries of the matrices AAT and
AT A? What is the connection to the co-occurrence matrix CCT in Chap-
ter 18?

Exercise 21.21 What are the principal eigenvalues of AAT and AT A?

Exercise 21.22 For the web graph in Figure 21.7, compute PageRank, hub and
authority scores for each of the three pages. Also give the relative ordering
of the three nodes for each of these scores, indicating any ties.

q1 q2

q3

Figure 21.7 Web graph for Exercise 21.22.
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PageRank: Assume that at each step of the PageRank random walk, we
teleport to a random page with probability 0.1, with a uniform distribution
over which particular page we teleport to.

Hubs/authorities: Normalize the hub (authority) scores so that the maxi-
mum hub (authority) score is 1.

Hint 1: Using symmetries to simplify and solving with linear equations
might be easier than using iterative methods.

Hint 2: Provide the relative ordering (indicating any ties) of the three nodes
for each of the three scoring measures.

21.4 References and further reading

Garfield (1955) is seminal in the science of citation analysis. This was built
on by Pinski and Narin (1976) to develop a journal influence weight, whose
definition is remarkably similar to that of the PageRank measure.

The use of anchor text as an aid to searching and ranking stems from the
work of McBryan (1994). Extended anchor text was implicit in his work, with
systematic experiments reported in Chakrabarti et al. (1998).

Kemeny and Snell (1976) is a classic text on Markov chains. The PageRank
measure was developed in Brin and Page (1998) and in Page et al. (1998).
A number of methods for the fast computation of PageRank values are sur-
veyed in Berkhin (2005) and in Langville and Meyer (2006); the former also
details how the PageRank eigenvector solution may be viewed as solving a
linear system, leading to one way of solving Exercise 21.16. The effect of the
teleport probability α has been studied by Baeza-Yates et al. (2005) and by
Boldi et al. (2005). Topic-specific PageRank and variants were developed in
Haveliwala (2002), Haveliwala (2003) and in Jeh and Widom (2003). Berkhin
(2006a) develops an alternate view of topic-specific PageRank.

Ng et al. (2001b) suggests that the PageRank score assignment is more ro-
bust than HITS in the sense that scores are less sensitive to small changes in
graph topology. However, it has also been noted that the teleport operation
contributes significantly to PageRank’s robustness in this sense. Both Page-
Rank and HITS can be “spammed” by the orchestrated insertion of links into
the web graph; indeed, the Web is known to have such link farms that col-link farms

lude to increase the score assigned to certain pages by various link analysis
algorithms.

The HITS algorithm is due to Kleinberg (1999). Chakrabarti et al. (1998) de-
veloped variants that weighted links in the iterative computation based on
the presence of query terms in the pages being linked and compared these
with results from several web search engines. Bharat and Henzinger (1998)
further developed these and other heuristics, showing that certain combina-
tions outperformed the basic HITS algorithm. Borodin et al. (2001) provides
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a systematic study of several variants of the HITS algorithm. Ng et al. (2001b)
introduces a notion of stability for link analysis, arguing that small changes
to link topology should not lead to significant changes in the ranked list of
results for a query. Numerous other variants of HITS have been developed
by a number of authors, the best know of which is perhaps SALSA (Lempel
and Moran 2000).


