
 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4 Index construction

In this chapter, we look at how to construct an inverted index. We call this
process index construction or indexing; the process or machine that performs itindexing

the indexer. The design of indexing algorithms is governed by hardware con-indexer

straints. We therefore begin this chapter with a review of the basics of com-
puter hardware that are relevant for indexing. We then introduce blocked
sort-based indexing (Section 4.2), an efficient single-machine algorithm de-
signed for static collections that can be viewed as a more scalable version of
the basic sort-based indexing algorithm we introduced in Chapter 1. Sec-
tion 4.3 describes single-pass in-memory indexing, an algorithm that has
even better scaling properties because it does not hold the vocabulary in
memory. For very large collections like the web, indexing has to be dis-
tributed over computer clusters with hundreds or thousands of machines.
We discuss this in Section 4.4. Collections with frequent changes require dy-
namic indexing introduced in Section 4.5 so that changes in the collection are
immediately reflected in the index. Finally, we cover some complicating is-
sues that can arise in indexing – such as security and indexes for ranked
retrieval – in Section 4.6.

Index construction interacts with several topics covered in other chapters.
The indexer needs raw text, but documents are encoded in many ways (see
Chapter 2). Indexers compress and decompress intermediate files and the fi-
nal index (see Chapter 5). In web search, documents are not on a local file
system, but have to be spidered or crawled (see Chapter 20). In enterprise
search, most documents are encapsulated in varied content management
systems, email applications, and databases. We give some examples in Sec-
tion 4.7. Although most of these applications can be accessed via http, native
Application Programming Interfaces (APIs) are usually more efficient. The
reader should be aware that building the subsystem that feeds raw text to
the indexing process can in itself be a challenging problem.

61



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

62 Index construction

Table 4.1 Typical system parameters in 2007. The seek time is the time needed to
position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value

s average seek time 5 ms = 5 × 10−3 s
b transfer time per byte 0.02 µs = 2 × 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation
(e.g., compare & swap a word) 0.01 µs = 10−8 s

size of main memory several GB
size of disk space 1 TB or more

4.1 Hardware basics

When building an information retrieval (IR) system, many decisions are
based on the characteristics of the computer hardware on which the system
runs. We therefore begin this chapter with a brief review of computer hard-
ware. Performance characteristics typical of systems in 2007 are shown in
Table 4.1. A list of hardware basics that we need in this book to motivate IR
system design follows.

� Access to data in memory is much faster than access to data on disk. It
takes a few clock cycles (perhaps 5 × 10−9 seconds) to access a byte in
memory, but much longer to transfer it from disk (about 2 × 10−8 seconds).
Consequently, we want to keep as much data as possible in memory, espe-
cially those data that we need to access frequently. We call the technique
of keeping frequently used disk data in main memory caching.caching � When doing a disk read or write, it takes a while for the disk head to move
to the part of the disk where the data are located. This time is called the
seek time and it averages 5 ms for typical disks. No data are being trans-seek time

ferred during the seek. To maximize data transfer rates, chunks of data
that will be read together should therefore be stored contiguously on disk.
For example, using the numbers in Table 4.1 it may take as little as 0.2 sec-
onds to transfer 10 megabytes (MB) from disk to memory if it is stored as
one chunk, but up to 0.2 + 100 × (5 × 10−3) = 0.7 seconds if it is stored in
100 noncontiguous chunks because we need to move the disk head up to
100 times.� Operating systems generally read and write entire blocks. Thus, reading
a single byte from disk can take as much time as reading the entire block.
Block sizes of 8, 16, 32, and 64 kilobytes (KB) are common. We call the part
of main memory where a block being read or written is stored a buffer.buffer � Data transfers from disk to memory are handled by the system bus, not by
the processor. This means that the processor is available to process data
during disk I/O. We can exploit this fact to speed up data transfers by
storing compressed data on disk. Assuming an efficient decompression



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.2 Blocked sort-based indexing 63

algorithm, the total time of reading and then decompressing compressed
data is usually less than reading uncompressed data.� Servers used in IR systems typically have several gigabytes (GB) of main
memory, sometimes tens of GB. Available disk space is several orders of
magnitude larger.

4.2 Blocked sort-based indexing

The basic steps in constructing a nonpositional index are depicted in Fig-
ure 1.4 (page 8). We first make a pass through the collection assembling all
term–docID pairs. We then sort the pairs with the term as the dominant key
and docID as the secondary key. Finally, we organize the docIDs for each
term into a postings list and compute statistics like term and document fre-
quency. For small collections, all this can be done in memory. In this chapter,
we describe methods for large collections that require the use of secondary
storage.

To make index construction more efficient, we represent terms as termIDs
(instead of strings as we did in Figure 1.4), where each termID is a uniquetermID

serial number. We can build the mapping from terms to termIDs on the fly
while we are processing the collection; or, in a two-pass approach, we com-
pile the vocabulary in the first pass and construct the inverted index in the
second pass. The index construction algorithms described in this chapter all
do a single pass through the data. Section 4.7 gives references to multipass
algorithms that are preferable in certain applications, for example, when disk
space is scarce.

We work with the Reuters-RCV1 collection as our model collection in thisReuters-
RCV1 chapter, a collection with roughly 1 GB of text. It consists of about 800,000

documents that were sent over the Reuters newswire during a 1-year pe-
riod between August 20, 1996, and August 19, 1997. A typical document is
shown in Figure 4.1, but note that we ignore multimedia information like
images in this book and are only concerned with text. Reuters-RCV1 covers
a wide range of international topics, including politics, business, sports, and
(as in this example) science. Some key statistics of the collection are shown
in Table 4.2.

Reuters-RCV1 has 100 million tokens. Collecting all termID–docID pairs
of the collection using 4 bytes each for termID and docID therefore requires
0.8 GB of storage. Typical collections today are often one or two orders of
magnitude larger than Reuters-RCV1. You can easily see how such collec-
tions overwhelm even large computers if we try to sort their termID–docID
pairs in memory. If the size of the intermediate files during index construc-
tion is within a small factor of available memory, then the compression tech-
niques introduced in Chapter 5 can help; however, the postings file of many
large collections cannot fit into memory even after compression.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

64 Index construction

REUTERS

Extreme conditions create rare Antarctic clouds

You are here:  Home > News > Science > Article

Go to a Section:      U.S.     International      Business      Markets Politics Entertainment Technology

Tue Aug 1, 2006 3:20am ET

Email This Article | Print This Article | Reprints

SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds

caused by extreme weather conditions above Antarctica are a

possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate

wisps of colors were photographed in the sky over an Australian

meteorological base at Mawson Station on July 25.

Sports Oddly Enough

[-] Text [+]

Figure 4.1 Document from the Reuters newswire.

With main memory insufficient, we need to use an external sorting algo-external
sorting

algorithm
rithm, that is, one that uses disk. For acceptable speed, the central require-
ment of such an algorithm is that it minimize the number of random disk
seeks during sorting – sequential disk reads are far faster than seeks as we
explained in Section 4.1. One solution is the blocked sort-based indexing algo-blocked

sort-based
indexing

algorithm

rithm or BSBI in Figure 4.2. BSBI (i) segments the collection into parts of equal
size, (ii) sorts the termID–docID pairs of each part in memory, (iii) stores in-
termediate sorted results on disk, and (iv) merges all intermediate results
into the final index.

The algorithm parses documents into termID–docID pairs and accumu-
lates the pairs in memory until a block of a fixed size is full (ParseNextBlock
in Figure 4.2). We choose the block size to fit comfortably into memory to
permit a fast in-memory sort. The block is then inverted and written to disk.
Inversion involves two steps. First, we sort the termID–docID pairs. Next,inversion

we collect all termID–docID pairs with the same termID into a postings list,
where a posting is simply a docID. The result, an inverted index for the blockposting

we have just read, is then written to disk. Applying this to Reuters-RCV1 and

Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for
the computations in this book. The unrounded values are: 806,791 docu-
ments, 222 tokens per document, 391,523 (distinct) terms, 6.04 bytes per
token with spaces and punctuation, 4.5 bytes per token without spaces and
punctuation, 7.5 bytes per term, and 96,969,056 tokens. The numbers in this
table correspond to the third line (“case folding”) in Table 5.1 (page 80).

Symbol Statistic Value

N documents 800,000
Lave avg. # tokens per document 200
M terms 400,000

avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term 7.5
tokens 100,000,000



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.2 Blocked sort-based indexing 65

BSBIndexConstruction()
1 n ← 0
2 while (all documents have not been processed)
3 do n ← n + 1
4 block ← ParseNextBlock()
5 BSBI-Invert(block)
6 WriteBlockToDisk(block, fn)
7 MergeBlocks( f1, . . . , fn; f merged)

Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted blocks in files f1, . . . , fn

and the merged index in f merged.

assuming we can fit 10 million termID–docID pairs into memory, we end up
with ten blocks, each an inverted index of one part of the collection.

In the final step, the algorithm simultaneously merges the ten blocks into
one large merged index. An example with two blocks is shown in Figure 4.3,
where we use di to denote the i th document of the collection. To do the merg-
ing, we open all block files simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write buffer for the final merged
index we are writing. In each iteration, we select the lowest termID that
has not been processed yet using a priority queue or a similar data struc-
ture. All postings lists for this termID are read and merged, and the merged
list is written back to disk. Each read buffer is refilled from its file when
necessary.

How expensive is BSBI? Its time complexity is �(T log T) because the step
with the highest time complexity is sorting and T is an upper bound for the
number of items we must sort (i.e., the number of termID–docID pairs). But
the actual indexing time is usually dominated by the time it takes to parse

brutus d1,d3
caesar d1,d2,d4
noble d5
with d1,d2,d3,d5

brutus d6,d7
caesar d8,d9
julius d10
killed d8

postings lists
to be merged

brutus d1,d3,d6,d7
caesar d1,d2,d4,d8,d9
julius d10
killed d8
noble d5
with d1,d2,d3,d5

merged
postings lists

disk

Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to be merged”)
are loaded from disk into memory, merged in memory (“merged postings lists”) and written back
to disk. We show terms instead of termIDs for better readability.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

66 Index construction

the documents (ParseNextBlock) and to do the final merge (MergeBlocks).
Exercise 4.6 asks you to compute the total index construction time for RCV1
that includes these steps as well as inverting the blocks and writing them to
disk.

Notice that Reuters-RCV1 is not particularly large in an age when 1 or
more GB of memory are standard on personal computers. With appropriate
compression (Chapter 5), we could have created an inverted index for RCV1
in memory on a not overly beefy server. The techniques we have described
are needed, however, for collections that are several orders of magnitude
larger.

? Exercise 4.1 If we need T log2 T comparisons (where T is the number of
termID–docID pairs) and two disk seeks for each comparison, how much
time would index construction for Reuters-RCV1 take if we used disk
instead of memory for storage and an unoptimized sorting algorithm
(i.e., not an external sorting algorithm)? Use the system parameters in
Table 4.1.

Exercise 4.2 [	] How would you create the dictionary in blocked sort-based
indexing on the fly to avoid an extra pass through the data?

4.3 Single-pass in-memory indexing

Blocked sort-based indexing has excellent scaling properties, but it needs
a data structure for mapping terms to termIDs. For very large collections,
this data structure does not fit into memory. A more scalable alternative is
single-pass in-memory indexing or SPIMI. SPIMI uses terms instead of termIDs,single-pass

in-memory
indexing

writes each block’s dictionary to disk, and then starts a new dictionary for the
next block. SPIMI can index collections of any size as long as there is enough
disk space available.

The SPIMI algorithm is shown in Figure 4.4. The part of the algorithm that
parses documents and turns them into a stream of term-docID pairs, which
we call tokens here, has been omitted. SPIMI-Invert is called repeatedly on
the token stream until the entire collection has been processed.

Tokens are processed one by one (line 4). When a term occurs for the first
time, it is added to the dictionary (best implemented as a hash), and a new
postings list is created (line 6). The call in line 7 returns this postings list for
subsequent occurrences of the term.

A difference between BSBI and SPIMI is that SPIMI adds a posting di-
rectly to its postings list (line 10). Instead of first collecting all termID–docID
pairs and then sorting them (as we did in BSBI), each postings list is dynamic
(i.e., its size is adjusted as it grows) and it is immediately available to collect
postings. This has two advantages: It is faster because there is no sorting



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.3 Single-pass in-memory indexing 67

SPIMI-Invert(token stream)
1 output f ile = NewFile()
2 dictionary = NewHash()
3 while (free memory available)
4 do token ← next(token stream)
5 if term(token) /∈ dictionary
6 then postings list = AddToDictionary(dictionary, term(token))
7 else postings list = GetPostingsList(dictionary, term(token))
8 if f ull(postings list)
9 then postings list = DoublePostingsList(dictionary, term(token))

10 AddToPostingsList(postings list, doc I D(token))
11 sorted terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted terms, dictionary, output f ile)
13 return output f ile

Figure 4.4 Inversion of a block in single-pass in-memory indexing.

required, and it saves memory because we keep track of the term a postings
list belongs to, so the termIDs of postings need not be stored. As a result, the
blocks that individual calls of SPIMI-Invert can process are much larger and
the index construction process as a whole is more efficient.

Because we do not know how large the postings list of a term will be when
we first encounter it, we allocate space for a short postings list initially and
double the space each time it is full (lines 8–9). This means that some mem-
ory is wasted, which counteracts the memory savings from the omission of
termIDs in intermediate data structures. However, the overall memory re-
quirements for the dynamically constructed index of a block in SPIMI are
still lower than in BSBI.

When memory has been exhausted, we write the index of the block (which
consists of the dictionary and the postings lists) to disk (line 12). We have to
sort the terms (line 11) before doing this because we want to write postings
lists in lexicographic order to facilitate the final merging step. If each block’s
postings lists were written in unsorted order, merging blocks could not be
accomplished by a simple linear scan through each block.

Each call of SPIMI-Invert writes a block to disk, just as in BSBI. The last
step of SPIMI (corresponding to line 7 in Figure 4.2; not shown in Figure 4.4)
is then to merge the blocks into the final inverted index.

In addition to constructing a new dictionary structure for each block and
eliminating the expensive sorting step, SPIMI has a third important compo-
nent: compression. Both the postings and the dictionary terms can be stored
compactly on disk if we employ compression. Compression increases the ef-
ficiency of the algorithm further because we can process even larger blocks,
and because the individual blocks require less space on disk. We refer readers
to the literature for this aspect of the algorithm (Section 4.7).

The time complexity of SPIMI is �(T) because no sorting of tokens is re-
quired and all operations are at most linear in the size of the collection.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

68 Index construction

4.4 Distributed indexing

Collections are often so large that we cannot perform index construction effi-
ciently on a single machine. This is particularly true of the World Wide Web
for which we need large computer clusters1 to construct any reasonably sized
web index. Web search engines, therefore, use distributed indexing algorithms
for index construction. The result of the construction process is a distributed
index that is partitioned across several machines – either according to term
or according to document. In this section, we describe distributed indexing
for a term-partitioned index. Most large search engines prefer a document-
partitioned index (which can be easily generated from a term-partitioned
index). We discuss this topic further in Section 20.3 (page 415).

The distributed index construction method we describe in this section is an
application of MapReduce, a general architecture for distributed computing.MapReduce

MapReduce is designed for large computer clusters. The point of a cluster is
to solve large computing problems on cheap commodity machines or nodes
that are built from standard parts (processor, memory, disk) as opposed to on
a supercomputer with specialized hardware. Although hundreds or thou-
sands of machines are available in such clusters, individual machines can
fail at any time. One requirement for robust distributed indexing is, there-
fore, that we divide the work up into chunks that we can easily assign and –
in case of failure – reassign. A master node directs the process of assigning andmaster node

reassigning tasks to individual worker nodes.
The map and reduce phases of MapReduce split up the computing job

into chunks that standard machines can process in a short time. The various
steps of MapReduce are shown in Figure 4.5 and an example on a collection
consisting of two documents is shown in Figure 4.6. First, the input data, in
our case a collection of web pages, are split into n splits where the size ofsplits

the split is chosen to ensure that the work can be distributed evenly (chunks
should not be too large) and efficiently (the total number of chunks we need
to manage shouldn’t be too large); 16 or 64 MB are good sizes in distributed
indexing. Splits are not preassigned to machines, but are instead assigned
by the master node on an ongoing basis: As a machine finishes processing
one split, it is assigned the next one. If a machine dies or becomes a laggard
due to hardware problems, the split it is working on is simply reassigned to
another machine.

In general, MapReduce breaks a large computing problem into smaller
parts by recasting it in terms of manipulation of key-value pairs. For index-key-value

pairs ing, a key-value pair has the form (termID,docID). In distributed indexing,
the mapping from terms to termIDs is also distributed and therefore more

1 A cluster in this chapter is a group of tightly coupled computers that work together closely.
This sense of the word is different from the use of cluster as a group of documents that are
semantically similar in Chapters 16–18.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.4 Distributed indexing 69

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

Figure 4.5 An example of distributed indexing with MapReduce. Adapted from Dean and Ghe-
mawat (2004).

complex than in single-machine indexing. A simple solution is to maintain
a (perhaps precomputed) mapping for frequent terms that is copied to all
nodes and to use terms directly (instead of termIDs) for infrequent terms.
We do not address this problem here and assume that all nodes share a con-
sistent term → termID mapping.

The map phase of MapReduce consists of mapping splits of the input datamap phase

to key-value pairs. This is the same parsing task we also encountered in BSBI
and SPIMI, and we therefore call the machines that execute the map phase
parsers. Each parser writes its output to local intermediate files, the segmentparser

segment file files (shown as a-f g-p q-z in Figure 4.5).

For the reduce phase, we want all values for a given key to be stored closereduce phase

together, so that they can be read and processed quickly. This is achieved by
partitioning the keys into j term partitions and having the parsers write key-
value pairs for each term partition into a separate segment file. In Figure 4.5,
the term partitions are according to first letter: a–f, g–p, q–z, and j = 3. (We
chose these key ranges for ease of exposition. In general, key ranges need not
correspond to contiguous terms or termIDs.) The term partitions are defined
by the person who operates the indexing system (Exercise 4.10). The parsers
then write corresponding segment files, one for each term partition. Each
term partition thus corresponds to r segments files, where r is the number
of parsers. For instance, Figure 4.5 shows three a–f segment files of the a–f
partition, corresponding to the three parsers shown in the figure.

Collecting all values (here: docIDs) for a given key (here: termID) into one
list is the task of the inverters in the reduce phase. The master assigns eachinverter

term partition to a different inverter – and, as in the case of parsers, reas-
signs term partitions in case of failing or slow inverters. Each term partition



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

70 Index construction

Schema of map and reduce functions
map: input list(k,v)
reduce: (k,list(v)) output

Instantiation of the schema for index construction
map: web collection list(termID, docID)
reduce: ( termID ,1 list(docID) ,  termID  ,2 list(docID) , . . . ) (postings list list1, postings 2, . . . )

Example for index construction
map: d2 : C died. d1 : C came, C c’ed. ( C, d2 ,  died,d2 ,  C,d1 ,  came,d1 ,  C,d1 ,  〈c’ed,d1〉)
reduce: ( C,(d2,d1,d1) ,  died,(d2) ,  came,(d1) , c’ed,(d1) ) (〈C,(d1:2,d2:1)〉,  〈died,(d2:1)〉,  〈came,(d1:1)〉,  〈c’ed,(d1:1)〉 )

〉 〉

〉 〉 〉 〉
〉〉〉〉 〉

〈

〈 〈

〈 〈 〈
〈〈〈〈 〈

→
→

→
→

→
→

Figure 4.6 Map and reduce functions in MapReduce. In general, the map function produces a
list of key-value pairs. All values for a key are collected into one list in the reduce phase. This list
is then processed further. The instantiations of the two functions and an example are shown for
index construction. Because the map phase processes documents in a distributed fashion, termID–
docID pairs need not be ordered correctly initially as in this example. The example shows terms
instead of termIDs for better readability. We abbreviate Caesar as C and conquered as c’ed.

(corresponding to r segment files, one on each parser) is processed by one in-
verter. We assume here that segment files are of a size that a single machine
can handle (Exercise 4.9). Finally, the list of values is sorted for each key and
written to the final sorted postings list (“postings” in the figure). (Note that
postings in Figure 4.6 include term frequencies, whereas each posting in the
other sections of this chapter is simply a docID without term frequency in-
formation.) The data flow is shown for a–f in Figure 4.5. This completes the
construction of the inverted index.

Parsers and inverters are not separate sets of machines. The master iden-
tifies idle machines and assigns tasks to them. The same machine can be a
parser in the map phase and an inverter in the reduce phase. And there are
often other jobs that run in parallel with index construction, so in between
being a parser and an inverter a machine might do some crawling or another
unrelated task.

To minimize write times before inverters reduce the data, each parser
writes its segment files to its local disk. In the reduce phase, the master com-
municates to an inverter the locations of the relevant segment files (e.g., of
the r segment files of the a–f partition). Each segment file only requires one
sequential read because all data relevant to a particular inverter were writ-
ten to a single segment file by the parser. This setup minimizes the amount
of network traffic needed during indexing.

Figure 4.6 shows the general schema of the MapReduce functions. In-
put and output are often lists of key-value pairs themselves, so that sev-
eral MapReduce jobs can run in sequence. In fact, this was the design of
the Google indexing system in 2004. What we describe in this section cor-
responds to only one of five to ten MapReduce operations in that indexing
system. Another MapReduce operation transforms the term-partitioned in-
dex we just created into a document-partitioned one.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.5 Dynamic indexing 71

MapReduce offers a robust and conceptually simple framework for im-
plementing index construction in a distributed environment. By providing
a semiautomatic method for splitting index construction into smaller tasks,
it can scale to almost arbitrarily large collections, given computer clusters of
sufficient size.

? Exercise 4.3 For n = 15 splits, r = 10 segments, and j = 3 term partitions,
how long would distributed index creation take for Reuters-RCV1 in a
MapReduce architecture? Base your assumptions about cluster machines
on Table 4.1.

4.5 Dynamic indexing

Thus far, we have assumed that the document collection is static. This is
fine for collections that change infrequently or never (e.g., the Bible or
Shakespeare). But most collections are modified frequently with documents
being added, deleted, and updated. This means that new terms need to be
added to the dictionary, and postings lists need to be updated for existing
terms.

The simplest way to achieve this is to periodically reconstruct the index
from scratch. This is a good solution if the number of changes over time is
small and a delay in making new documents searchable is acceptable – and
if enough resources are available to construct a new index while the old one
is still available for querying.

If there is a requirement that new documents be included quickly, one solu-
tion is to maintain two indexes: a large main index and a small auxiliary indexauxiliary

index that stores new documents. The auxiliary index is kept in memory. Searches
are run across both indexes and results merged. Deletions are stored in an
invalidation bit vector. We can then filter out deleted documents before re-
turning the search result. Documents are updated by deleting and reinserting
them.

Each time the auxiliary index becomes too large, we merge it into the main
index. The cost of this merging operation depends on how we store the index
in the file system. If we store each postings list as a separate file, then the
merge simply consists of extending each postings list of the main index by
the corresponding postings list of the auxiliary index. In this scheme, the
reason for keeping the auxiliary index is to reduce the number of disk seeks
required over time. Updating each document separately requires up to Mave

disk seeks, where Mave is the average size of the vocabulary of documents
in the collection. With an auxiliary index, we only put additional load on the
disk when we merge auxiliary and main indexes.

Unfortunately, the one-file-per-postings-list scheme is infeasible because
most file systems cannot efficiently handle very large numbers of files. The



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

72 Index construction

LMergeAddToken(indexes, Z0, token)
1 Z0 ← Merge(Z0, {token})
2 if |Z0| = n
3 then for i ← 0 to ∞
4 do if Ii ∈ indexes
5 then Zi+1 ← Merge(Ii , Zi )
6 (Zi+1 is a temporary index on disk.)
7 indexes ← indexes − {Ii }
8 else Ii ← Zi (Zi becomes the permanent index Ii .)
9 indexes ← indexes ∪ {Ii }

10 Break
11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes ← ∅
3 while true
4 do LMergeAddToken(indexes, Z0, getNextToken())

Figure 4.7 Logarithmic merging. Each token (termID,docID) is initially added to in-memory
index Z0 by LMergeAddToken. LogarithmicMerge initializes Z0 and indexes.

simplest alternative is to store the index as one large file, that is, as a concate-
nation of all postings lists. In reality, we often choose a compromise between
the two extremes (Section 4.7). To simplify the discussion, we choose the sim-
ple option of storing the index as one large file here.

In this scheme, we process each posting �T/n� times because we touch it
during each of �T/n� merges where n is the size of the auxiliary index and T
the total number of postings. Thus, the overall time complexity is �(T2/n).
(We neglect the representation of terms here and consider only the docIDs.
For the purpose of time complexity, a postings list is simply a list of docIDs.)

We can do better than �(T2/n) by introducing log2(T/n) indexes I0, I1,
I2, . . . of size 20 × n, 21 × n, 22 × n . . . . Postings percolate up this sequence of
indexes and are processed only once on each level. This scheme is called loga-logarithmic

merging rithmic merging (Figure 4.7). As before, up to n postings are accumulated in an
in-memory auxiliary index, which we call Z0. When the limit n is reached, the
20 × n postings in Z0 are transferred to a new index I0 that is created on disk.
The next time Z0 is full, it is merged with I0 to create an index Z1 of size 21× n.
Then Z1 is either stored as I1 (if there isn’t already an I1) or merged with I1

into Z2 (if I1 exists); and so on. We service search requests by querying in-
memory Z0 and all currently valid indexes Ii on disk and merging the results.
Readers familiar with the binomial heap data structure2 will recognize its
similarity with the structure of the inverted indexes in logarithmic merging.

2 See, for example, (Cormen et al. 1990, ch. 19).



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.6 Other types of indexes 73

Overall index construction time is �(T log(T/n)) because each posting is
processed only once on each of the log(T/n) levels. We trade this efficiency
gain for a slow down of query processing; we now need to merge results
from log(T/n) indexes as opposed to just two (the main and auxiliary in-
dexes). As in the auxiliary index scheme, we still need to merge very large in-
dexes occasionally (which slows down the search system during the merge),
but this happens less frequently and the indexes involved in a merge on av-
erage are smaller.

Having multiple indexes complicates the maintenance of collection-wide
statistics. For example, it affects the spelling correction algorithm in Sec-
tion 3.3 (page 52) that selects the corrected alternative with the most hits.
With multiple indexes and an invalidation bit vector, the correct number of
hits for a term is no longer a simple lookup. In fact, all aspects of an IR sys-
tem – index maintenance, query processing, distribution, and so on – are
more complex in logarithmic merging.

Because of this complexity of dynamic indexing, some large search en-
gines adopt a reconstruction-from-scratch strategy. They do not construct in-
dexes dynamically. Instead, a new index is built from scratch periodically.
Query processing is then switched from the new index and the old index is
deleted.

? Exercise 4.4 For n = 2 and 1 ≤ T ≤ 30, perform a step-by-step simulation of
the algorithm in Figure 4.7. Create a table that shows, for each point in
time at which T = 2 ∗ k tokens have been processed (1 ≤ k ≤ 15), which of
the three indexes I0, . . . , I3 are in use. The first three lines of the table are
given below.

I3 I2 I1 I0

2 0 0 0 0
4 0 0 0 1
6 0 0 1 0

4.6 Other types of indexes

This chapter only describes construction of nonpositional indexes. Except
for the much larger data volume we need to accommodate, the main differ-
ence for positional indexes is that (termID, docID, (position1, position2, . . . ))
triples, instead of (termID, docID) pairs have to be processed and that tokens
and postings contain positional information in addition to docIDs. With this
change, the algorithms discussed here can all be applied to positional in-
dexes.

In the indexes we have considered so far, postings lists are ordered with
respect to docID. As we see in Chapter 5, this is advantageous for compres-
sion – instead of docIDs we can compress smaller gaps between IDs, thus



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

74 Index construction

users

documents

0/1
doc e., 1 otherwis
0 if user can’t read

Figure 4.8 A user-document matrix for access control lists. Element (i, j) is 1 if user i has ac-
cess to document j and 0 otherwise. During query processing, a user’s access postings list is
intersected with the results list returned by the text part of the index.

reducing space requirements for the index. However, this structure for the
index is not optimal when we build ranked (Chapters 6 and 7) – as opposedranked

to Boolean – retrieval systems. In ranked retrieval, postings are often orderedretrieval
systems according to weight or impact, with the highest-weighted postings occurring

first. With this organization, scanning of long postings lists during query pro-
cessing can usually be terminated early when weights have become so small
that any further documents can be predicted to be of low similarity to the
query (see Chapter 6). In a docID-sorted index, new documents are always
inserted at the end of postings lists. In an impact-sorted index (Section 7.1.5,
page 129), the insertion can occur anywhere, thus complicating the update of
the inverted index.

Security is an important consideration for retrieval systems in corporations.security

A low-level employee should not be able to find the salary roster of the cor-
poration, but authorized managers need to be able to search for it. Users’
results lists must not contain documents they are barred from opening; the
very existence of a document can be sensitive information.

User authorization is often mediated through access control lists or ACLs.access
control lists ACLs can be dealt with in an information retrieval system by representing

each document as the set of users that can access them (Figure 4.8) and then
inverting the resulting user-document matrix. The inverted ACL index has,
for each user, a “postings list” of documents they can access – the user’s
access list. Search results are then intersected with this list. However, such
an index is difficult to maintain when access permissions change – we dis-
cussed these difficulties in the context of incremental indexing for regular
postings lists in Section 4.5. It also requires the processing of very long post-
ings lists for users with access to large document subsets. User membership
is therefore often verified by retrieving access information directly from the
file system at query time – even though this slows down retrieval.

We discussed indexes for storing and retrieving terms (as opposed to doc-
uments) in Chapter 3.

? Exercise 4.5 Can spelling correction compromise document-level security?
Consider the case where a spelling correction is based on documents to
which the user does not have access.



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.6 Other types of indexes 75

Table 4.3 The five steps in constructing an index for
Reuters-RCV1 in blocked sort-based indexing. Line numbers
refer to Figure 4.2.

Step Time

1 reading of collection (line 4)
2 10 initial sorts of 107 records each (line 5)
3 writing of 10 blocks (line 6)
4 total disk transfer time for merging (line 7)
5 time of actual merging (line 7)

total

? Exercise 4.6 Total index construction time in blocked sort-based indexing is
broken down in Table 4.3. Fill out the time column of the table for Reuters-
RCV1 assuming a system with the parameters given in Table 4.1.

Exercise 4.7 Repeat Exercise 4.6 for the larger collection in Table 4.4. Choose
a block size that is realistic for current technology (remember that a block
should easily fit into main memory). How many blocks do you need?

Exercise 4.8 Assume that we have a collection of modest size whose index
can be constructed with the simple in-memory indexing algorithm in Fig-
ure 1.4 (page 8). For this collection, compare memory, disk and time re-
quirements of the simple algorithm in Figure 1.4 and blocked sort-based
indexing.

Exercise 4.9 Assume that machines in MapReduce have 100 GB of disk space
each. Assume further that the postings list of the term the has a size of 200
GB. Then the MapReduce algorithm as described cannot be run to con-
struct the index. How would you modify MapReduce so that it can handle
this case?

Exercise 4.10 For optimal load balancing, the inverters in MapReduce must
get segmented postings files of similar sizes. For a new collection, the dis-
tribution of key-value pairs may not be known in advance. How would
you solve this problem?

Exercise 4.11 Apply MapReduce to the problem of counting how often each
term occurs in a set of files. Specify map and reduce operations for this
task. Write down an example along the lines of Figure 4.6.

Table 4.4 Collection statistics for a large collection.

Symbol Statistic Value

N # documents 1,000,000,000
Lave # tokens per document 1000
M # distinct terms 44,000,000



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

76 Index construction

Exercise 4.12 We claimed (on page 73) that an auxiliary index can impair the
quality of collection statistics. An example is the term weighting method
idf, which is defined as log(N/dfi ) where N is the total number of doc-
uments and dfi is the number of documents that term i occurs in (Sec-
tion 6.2.1, page 108). Show that even a small auxiliary index can cause
significant error in idf when it is computed on the main index only. Con-
sider a rare term that suddenly occurs frequently (e.g., Flossie as in Tropical

Storm Flossie).

4.7 References and further reading

Witten et al. (1999, Chapter 5) present an extensive treatment of the subject of
index construction and additional indexing algorithms with different trade-
offs of memory, disk space, and time. In general, blocked sort-based index-
ing does well on all three counts. However, if conserving memory or disk
space is the main criterion, then other algorithms may be a better choice. See
Witten et al. (1999), Tables 5.4 and 5.5; BSBI is closest to “sort-based multi-
way merge,” but the two algorithms differ in dictionary structure and use of
compression.

Moffat and Bell (1995) show how to construct an index “in situ,” that
is, with disk space usage close to what is needed for the final index and
with a minimum of additional temporary files (cf. also Harman and Candela
(1990)). They give Lesk (1988) and Somogyi (1990) credit for being among the
first to employ sorting for index construction.

The SPIMI method in Section 4.3 is from (Heinz and Zobel 2003). We have
simplified several aspects of the algorithm, including compression and the
fact that each term’s data structure also contains, in addition to the postings
list, its document frequency and house keeping information. We recommend
Heinz and Zobel (2003) and Zobel and Moffat (2006) as up-do-date, in-depth
treatments of index construction. Other algorithms with good scaling prop-
erties with respect to vocabulary size require several passes through the data,
e.g., FAST-INV (Fox and Lee 1991, Harman et al. 1992).

The MapReduce architecture was introduced by Dean and Ghemawat
(2004). An open source implementation of MapReduce is available at
http://lucene.apache.org/hadoop/. Ribeiro-Neto et al. (1999) and Melnik et al.
(2001) describe other approaches to distributed indexing. Introductory chap-
ters on distributed IR are (Baeza-Yates and Ribeiro-Neto 1999, Chapter 9) and
(Grossman and Frieder 2004, Chapter 8). See also Callan (2000).

Lester et al. (2005) and Büttcher and Clarke (2005a) analyze the properties
of logarithmic merging and compare it with other construction methods. One
of the first uses of this method was in Lucene (http://lucene.apache.org). Other
dynamic indexing methods are discussed by Büttcher et al. (2006) and Lester



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

4.7 References and further reading 77

et al. (2006). The latter paper also discusses the strategy of replacing the old
index by one built from scratch.

Heinz et al. (2002) compare data structures for accumulating the vocab-
ulary in memory. Büttcher and Clarke (2005b) discuss security models for a
common inverted index for multiple users. A detailed characterization of the
Reuters-RCV1 collection can be found in (Lewis et al. 2004). NIST distributes
the collection (see http://trec.nist.gov/data/reuters/reuters.html).

Garcia-Molina et al. (1999, Chapter 2) review computer hardware relevant
to system design in depth.

An effective indexer for enterprise search needs to be able to communicate
efficiently with a number of applications that hold text data in corporations,
including Microsoft Outlook, IBM’s Lotus software, databases like Oracle
and MySQL, content management systems like Open Text, and enterprise
resource planning software like SAP.


