

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3Dictionaries and tolerant
retrieval

In Chapters 1 and 2, we developed the ideas underlying inverted indexes
for handling Boolean and proximity queries. Here, we develop techniques
that are robust to typographical errors in the query, as well as alternative
spellings. In Section 3.1, we develop data structures that help the search
for terms in the vocabulary in an inverted index. In Section 3.2, we study
the idea of a wildcard query: a query such as *a*e*i*o*u*, which seeks docu-wildcard

query ments containing any term that includes all the five vowels in sequence. The
* symbol indicates any (possibly empty) string of characters. Users pose such
queries to a search engine when they are uncertain about how to spell a query
term, or seek documents containing variants of a query term; for instance,
the query automat* seeks documents containing any of the terms automatic,
automation, and automated.

We then turn to other forms of imprecisely posed queries, focusing on
spelling errors in Section 3.3. Users make spelling errors either by accident,
or because the term they are searching for (e.g., Herman) has no unambigu-
ous spelling in the collection. We detail a number of techniques for correcting
spelling errors in queries, one term at a time as well as for an entire string of
query terms. Finally, in Section 3.4 we study a method for seeking vocabulary
terms that are phonetically close to the query term(s). This can be especially
useful in cases like the Herman example, where the user may not know how
a proper name is spelled in documents in the collection.

Because we develop many variants of inverted indexes in this chapter, we
sometimes use the phrase standard inverted index to mean the inverted index
developed in Chapters 1 and 2, in which each vocabulary term has a postings
list with the documents in the collection.

3.1 Search structures for dictionaries

Given an inverted index and a query, our first task is to determine whether
each query term exists in the vocabulary and, if so, identify the pointer to the

45

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

46 Dictionaries and tolerant retrieval

corresponding postings. This vocabulary lookup operation uses a classical
data structure called the dictionary and has two broad classes of solutions:
hashing and search trees. In the literature of data structures, the entries in
the vocabulary (in our case, terms) are often referred to as keys. The choice
of solution (hashing or search trees) is governed by a number of questions:
(1) How many keys are we likely to have? (2) Is the number likely to remain
static, or change a lot – and in the case of changes, are we likely to only have
new keys inserted, or to also have some keys in the dictionary be deleted? (3)
What are the relative frequencies with which various keys will be accessed?

Hashing has been used for dictionary lookup in some search engines. Each
vocabulary term (key) is hashed into an integer over a large enough space
that hash collisions are unlikely; collisions are resolved by auxiliary struc-
tures that can demand care to maintain.1 At query time, we hash each query
term separately and, following a pointer to the corresponding postings, tak-
ing into account any logic for resolving hash collisions. There is no easy way
to find minor variants of a query term (such as the accented and unaccented
versions of a word like resume), because these could be hashed to very differ-
ent integers. In particular, we cannot seek (for instance) all terms beginning
with the prefix automat, an operation that we require in Section 3.2. Finally, in
a setting (such as the Web), where the size of the vocabulary keeps growing, a
hash function designed for current needs may not suffice in a few years’ time.

Search trees overcome many of these issues – for instance, they permit us
to enumerate all vocabulary terms beginning with automat. The best-known
search tree is the binary tree, in which each internal node has two children.binary tree

The search for a term begins at the root of the tree. Each internal node (in-
cluding the root) represents a binary test, based on whose outcome the search
proceeds to one of the two subtrees below that node. Figure 3.1 gives an ex-
ample of a binary search tree used for a dictionary. Efficient search (with a
number of comparisons that is O(log M)) hinges on the tree being balanced:
the numbers of terms under the two subtrees of any node are either equal
or differ by 1. The principal issue here is that of rebalancing; as terms are
inserted into or deleted from the binary search tree, it needs to be rebalanced
so that the balance property is maintained.

To mitigate rebalancing, one approach is to allow the number of subtrees
under an internal node to vary in a fixed interval. A search tree commonly
used for a dictionary is the B-tree – a search tree in which every internal nodeB-tree

has a number of children in the interval [a ,b], where a and b are appropriate
positive integers; Figure 3.2 shows an example with a = 2 and b = 4. Each
branch under an internal node again represents a test for a range of char-
acter sequences, as in the binary tree example of Figure 3.1. A B-tree may

1 So-called perfect hash functions are designed to preclude collisions, but are rather more com-
plicated both to implement and to compute.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.1 Search structures for dictionaries 47

Root
a-m n-z

si-zn-sh

zy
go

t

si
ck

le

hu
yg

en
s

aa
rd

va
rk

hy-ma-hu

Figure 3.1 A binary search tree. In this example, the branch at the root partitions vocabulary
terms into two subtrees, those whose first letter is between a and m, and the rest.

be viewed as “collapsing” multiple levels of the binary tree into one; this
is especially advantageous when some of the dictionary is disk resident, in
which case this collapsing serves the function of prefetching imminent bi-
nary tests. In such cases, the integers a and b are determined by the sizes
of disk blocks. Section 3.5 contains pointers to further background on search
trees and B-trees.

It should be noted that, unlike hashing, search trees demand that the char-
acters used in the document collection have a prescribed ordering; for in-
stance, the 26 letters of the English alphabet are always listed in the specific
order A through Z. Some Asian languages such as Chinese do not always
have a unique ordering, although by now all languages (including Chinese
and Japanese) have adopted a standard ordering system for their character
sets.

Figure 3.2 A B-tree. In this example every internal node has between 2 and 4 children.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

48 Dictionaries and tolerant retrieval

3.2 Wildcard queries

Wildcard queries are used in any of the following situations: (1) the user
is uncertain of the spelling of a query term (e.g., Sydney vs. Sidney, which
leads to the wildcard query S*dney); (2) the user is aware of multiple vari-
ants of spelling a term and (consciously) seeks documents containing any of
the variants (e.g., color vs. colour); (3) the user seeks documents containing
variants of a term that would be caught by stemming, but is unsure whether
the search engine performs stemming (e.g., judicial vs. judiciary, leading to the
wildcard query judicia*); or (4) the user is uncertain of the correct rendition of
a foreign word or phrase (e.g., the query Universit* Stuttgart).

A query such as mon* is known as a trailing wildcard query, because the *wildcard
query symbol occurs only once, at the end of the search string. A search tree on

the dictionary is a convenient way of handling trailing wildcard queries: we
walk down the tree following the symbols m, o, and n in turn, at which point
we can enumerate the set W of terms in the dictionary with the prefix mon.
Finally, we use |W| lookups on the standard inverted index to retrieve all
documents containing any term in W.

But what about wildcard queries in which the * symbol is not constrained
to be at the end of the search string? Before handling this general case, we
mention a slight generalization of trailing wildcard queries. First, consider
leading wildcard queries, or queries of the form *mon. Consider a reverse B-tree
on the dictionary – one in which each root-to-leaf path of the B-tree corre-
sponds to a term in the dictionary written backwards: thus, the term lemon

would, in the B-tree, be represented by the path root-n-o-m-e-l. A walk down
the reverse B-tree then enumerates all terms R in the vocabulary with a given
prefix.

In fact, using a regular B-tree together with a reverse B-tree, we can handle
an even more general case: wildcard queries in which there is a single * sym-
bol, such as se*mon. To do this, we use the regular B-tree to enumerate the set
W of dictionary terms beginning with the prefix se and a non-empty suffix,
then the reverse B-tree to enumerate the set R of terms ending with the suffix
mon. Next, we take the intersection W ∩ R of these two sets, to arrive at the
set of terms that begin with the prefix se and end with the suffix mon. Finally,
we use the standard inverted index to retrieve all documents containing any
terms in this intersection. We can thus handle wildcard queries that contain
a single * symbol using two B-trees, the normal B-tree and a reverse B-tree.

3.2.1 General wildcard queries

We now study two techniques for handling general wildcard queries. Both
techniques share a common strategy: express the given wildcard query qw as
a Boolean query Q on a specially constructed index, such that the answer to

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.2 Wildcard queries 49

hello$

ello$h

llo$he

lo$hel

hello

Figure 3.3 A portion of a permuterm index.

Q is a superset of the set of vocabulary terms matching qw. Then, we check
each term in the answer to Q against qw, discarding those vocabulary terms
that do not match qw. At this point, we have the vocabulary terms matching
qw and can resort to the standard inverted index.

Permuterm indexes

Our first special index for general wildcard queries is the permuterm index, apermuterm
index form of inverted index. First, we introduce a special symbol $ into our char-

acter set, to mark the end of a term. Thus, the term hello is shown here as the
augmented term hello$. Next, we construct a permuterm index, in which the
various rotations of each term (augmented with $) all link to the original vo-
cabulary term. Figure 3.3 gives an example of such a permuterm index entry
for the term hello.

We refer to the set of rotated terms in the permuterm index as the per-
muterm vocabulary.

How does this index help us with wildcard queries? Consider the wildcard
query m*n. The key is to rotate such a wildcard query so that the * symbol
appears at the end of the string; thus, the rotated wildcard query becomes
n$m*. Next, we look up this string in the permuterm index, where seeking
n$m* (via a search tree) leads to rotations of (among others) the terms man

and moron.
Now that the permuterm index enables us to identify the original vocab-

ulary terms matching a wildcard query, we look up these terms in the stan-
dard inverted index to retrieve matching documents. We can thus handle
any wildcard query with a single * symbol. But what about a query such as
fi*mo*er? In this case, we first enumerate the terms in the dictionary that are in
the permuterm index of er$fi*. Not all such dictionary terms have the string

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

50 Dictionaries and tolerant retrieval

etr beetroot metric petrify retrieval� � � �

Figure 3.4 Example of a postings list in a 3-gram index. Here the 3-gram etr is illustrated. Match-
ing vocabulary terms are lexicographically ordered in the postings.

mo in the middle – we filter these out by exhaustive enumeration, checking
each candidate to see if it contains mo. In this example, the term fishmonger

would survive this filtering but filibuster would not. We then run the surviv-
ing terms through the standard inverted index for document retrieval. One
disadvantage of the permuterm index is that its dictionary becomes quite
large, including as it does all rotations of each term.

Notice the close interplay between the B-tree and the permuterm index
above. Indeed, it suggests that the structure should perhaps be viewed as a
permuterm B-tree. However, we follow traditional terminology here in de-
scribing the permuterm index as distinct from the B-tree that allows us to
select the rotations with a given prefix.

3.2.2 k-Gram indexes for wildcard queries

Whereas the permuterm index is simple, it can lead to a considerable blowup
from the number of rotations per term; for a dictionary of English terms, this
can represent an almost tenfold space increase. We now present a second
technique, known as the k-gram index, for processing wildcard queries. We
also use k-gram indexes in Section 3.3.4. A k-gram is a sequence of k charac-
ters. Thus cas, ast and stl are all 3-grams occurring in the term castle. We use
a special character $ to denote the beginning or end of a term, so the full set
of 3-grams generated for castle is: $ca, cas, ast, stl, tle, le$.

In a k-gram index, the dictionary contains all k-grams that occur in any termk-gram index

in the vocabulary. Each postings list points from a k-gram to all vocabulary
terms containing that k-gram. For instance, the 3-gram etr would point to vo-
cabulary terms such as metric and retrieval. An example is given in Figure 3.4.

How does such an index help us with wildcard queries? Consider the wild-
card query re*ve. We are seeking documents containing any term that begins
with re and ends with ve. Accordingly, we run the Boolean query $re and VE$.
This is looked up in the 3-gram index and yields a list of matching terms such
as relive, remove, and retrieve. Each of these matching terms is then looked up
in the standard inverted index to yield documents matching the query.

There is, however, a difficulty with the use of k-gram indexes that demands
one further step of processing. Consider using the 3-gram index described for
the query red*. Following the process described, we first issue the Boolean
query $re and RED to the 3-gram index. This leads to a match on terms such
as retired, which contain the conjunction of the two 3-grams $re and red, yet
do not match the original wildcard query red*.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.2 Wildcard queries 51

To cope with this, we introduce a postfiltering step, in which the terms enu-
merated by the Boolean query on the 3-gram index are checked individually
against the original query red*. This is a simple string-matching operation
and weeds out terms such as retired that do not match the original query.
Terms that survive are then searched in the standard inverted index as usual.

We have seen that a wildcard query can result in multiple terms being
enumerated, each of which becomes a single-term query on the standard in-
verted index. Search engines do allow the combination of wildcard queries
using Boolean operators, for example, re*d AND fe*ri. What are the appropri-
ate semantics for such a query? Because each wildcard query turns into a
disjunction of single-term queries, the appropriate interpretation of this ex-
ample is that we have a conjunction of disjunctions: we seek all documents
that contain any term matching re*d and any term matching fe*ri.

Even without Boolean combinations of wildcard queries, the processing of
a wildcard query can be quite expensive, because of the added lookup in the
special index, filtering, and finally the standard inverted index. A search en-
gine may support such rich functionality, but most commonly, the capability
is hidden behind an interface (say an “Advanced Query” interface) that most
users never use. Exposing such functionality in the search interface often en-
courages users to invoke it even when they do not require it (say, by typing
a prefix of their query followed by a *), increasing the processing load on the
search engine.

? Exercise 3.1 In the permuterm index, each permuterm vocabulary term
points to the original vocabulary term(s) from which it was derived. How
many original vocabulary terms can there be in the postings list of a per-
muterm vocabulary term?

Exercise 3.2 Write down the entries in the permuterm index dictionary that
are generated by the term mama.

Exercise 3.3 If you wanted to search for s*ng in a permuterm wildcard index,
what key(s) would one do the lookup on?

Exercise 3.4 Refer to Figure 3.4; it is pointed out in the caption that the vo-
cabulary terms in the postings are lexicographically ordered. Why is this
ordering useful?

Exercise 3.5 Consider again the query fi*mo*er from Section 3.2.1. What Boo-
lean query on a bigram index would be generated for this query? Can you
think of a term that matches the permuterm query in Section 3.2.1, but
does not satisfy this Boolean query?

Exercise 3.6 Give an example of a sentence that falsely matches the wildcard
query mon*h if the search were to simply use a conjunction of bigrams.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

52 Dictionaries and tolerant retrieval

3.3 Spelling correction

We next look at the problem of correcting spelling errors in queries. For in-
stance, we may wish to retrieve documents containing the term carrot when
the user types the query carot. Google reports (www.google.com/jobs/britney.

html) that the following are all treated as misspellings of the query britney

spears: britian spears, britney’s spears, brandy spears, and prittany spears. We look
at two steps to solving this problem: the first based on edit distance and the
second based on k-gram overlap. Before getting into the algorithmic details of
these methods, we first review how search engines provide spell correction
as part of a user experience.

3.3.1 Implementing spelling correction

There are two basic principles underlying most spelling correction algo-
rithms.

1. Of various alternative correct spellings for a misspelled query, choose the
“nearest” one. This demands that we have a notion of nearness or prox-
imity between a pair of queries. We develop these proximity measures in
Section 3.3.3.

2. When two correctly spelled queries are tied (or nearly tied), select the one
that is more common. For instance, grunt and grant both seem equally plau-
sible as corrections for grnt. Then, the algorithm should choose the more
common of grunt and grant as the correction. The simplest notion of more
common is to consider the number of occurrences of the term in the collec-
tion; thus if grunt occurs more often than grant, it is the chosen correction.
A different notion of more common is employed in many search engines,
especially on the web. The idea is to use the correction that is most com-
mon among queries typed in by other users. The idea here is that if grunt is
typed as a query more often than grant, then it is more likely that the user
who typed grnt intended to type the query grunt.

Beginning in Section 3.3.3, we describe notions of proximity between
queries, as well as their efficient computation. Spelling correction algorithms
build on these computations of proximity; their functionality is then exposed
to users in one of several ways:

1. On the query carot always retrieve documents containing carot as well as
any “spell-corrected” version of carot, including carrot and tarot.

2. As in (1) above, but only when the query term carot is not in the dictionary.
3. As in (1) above, but only when the original query returned fewer than a

preset number of documents (say fewer than five documents).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.3 Spelling correction 53

4. When the original query returns fewer than a preset number of docu-
ments, the search interface presents a spelling suggestion to the end user:
this suggestion consists of the spell-corrected query term(s). Thus, the
search engine might respond to the user: “Did you mean carrot?”

3.3.2 Forms of spelling correction

We focus on two specific forms of spelling correction that we refer to as
isolated-term correction and context-sensitive correction. In isolated-term cor-
rection, we attempt to correct a single query term at a time – even when
we have a multiple-term query. The carot example demonstrates this type of
correction. Such isolated-term correction fails to detect, for instance, that the
query flew form Heathrow contains a misspelling of the term from – because
each term in the query is correctly spelled in isolation.

We begin by examining two techniques for addressing isolated-term cor-
rection: edit distance and k-gram overlap. We then proceed to context-
sensitive correction.

3.3.3 Edit distance

Given two character strings s1 and s2, the edit distance between them is theedit distance

minimum number of edit operations required to transform s1 into s2. Most
commonly, the edit operations allowed for this purpose are (i) insert a char-
acter into a string, (ii) delete a character from a string, and (iii) replace a
character of a string by another character; for these operations, edit distance
is sometimes known as Levenshtein distance. For example, the edit distanceLevenshtein

distance between cat and dog is three. In fact, the notion of edit distance can be gen-
eralized to allowing different weights for different kinds of edit operations;
for instance, a higher weight may be placed on replacing the character s by
the character p, than on replacing it by the character a (the latter being closer
to s on the keyboard). Setting weights in this way – depending on the likeli-
hood of letters substituting for each other – is very effective in practice (see
Section 3.4 for the separate issue of phonetic similarity). However, the re-
mainder of our treatment here focus on the case in which all edit operations
have the same weight.

It is well-known how to compute the (weighted) edit distance between
two strings in time O(|s1| × |s2|), where |si | denotes the length of a string si .
The idea is to use the dynamic programming algorithm in Figure 3.5, where
the characters in s1 and s2 are given in array form. The algorithm fills the
(integer) entries in a matrix m whose two dimensions equal the lengths of
the two strings whose edit distances is being computed; the (i, j) entry of
the matrix holds (after the algorithm is executed) the edit distance between

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

54 Dictionaries and tolerant retrieval

EditDistance(s1, s2)
1 int m[|s1|, |s2|] = 0
2 for i ← 1 to |s1|
3 do m[i, 0] = i
4 for j ← 1 to |s2|
5 do m[0, j] = j
6 for i ← 1 to |s1|
7 do for j ← 1 to |s2|
8 do m[i, j] = min{m[i − 1, j − 1] + if (s1[i] = s2[j]) then 0 else 1fi,
9 m[i − 1, j] + 1,

10 m[i, j − 1] + 1}
11 return m[|s1|, |s2|]

Figure 3.5 Dynamic programming algorithm for computing the edit distance between strings s1

and s2.

the strings consisting of the first i characters of s1 and the first j characters
of s2. The central dynamic programming step is depicted in lines 8–10 of
Figure 3.5, where the three quantities whose minimum is taken correspond
to substituting a character in s1, inserting a character in s1, and inserting a
character in s2.

Figure 3.6 shows an example Levenshtein distance computation of
Figure 3.5. The typical cell [i, j] has four entries formatted as a 2 × 2 cell.
The lower right entry in each cell is the min of the other three, correspond-
ing to the main dynamic programming step in Figure 3.5. The other three
entries are the three entries m[i − 1, j − 1] + 0 or 1 depending on whether
s1[i] = s2[j], m[i − 1, j] + 1 and m[i, j − 1] + 1. The cells with numbers in
italics depict the path by which we determine the Levenshtein distance.

f a s t

0 1 1 2 2 3 3 4 4

c
1
1

1 2
2 1

2 3
2 2

3 4
3 3

4 5
4 4

a
2
2

2 2
3 2

1 3
3 1

3 4
2 2

4 5
3 3

t
3
3

3 3
4 3

3 2
4 2

2 3
3 2

2 4
3 2

s
4
4

4 4
5 4

4 3
5 3

2 3
4 2

3 3
3 3

Figure 3.6 Example Levenshtein distance computation. The 2 × 2 cell in the [i, j] entry of the
table shows the three numbers whose minimum yields the fourth. The cells in italics determine
the edit distance in this example.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.3 Spelling correction 55

The spelling correction problem however demands more than computing
edit distance: given a set S of strings (corresponding to terms in the vocab-
ulary) and a query string q , we seek the string(s) in V of least edit distance
from q . We may view this as a decoding problem, in which the codewords
(the strings in V) are prescribed in advance. The obvious way of doing this is
to compute the edit distance from q to each string in V, before selecting the
string(s) of minimum edit distance. This exhaustive search is inordinately
expensive. Accordingly, a number of heuristics are used in practice to effi-
ciently retrieve vocabulary terms likely to have low edit distance to the query
term(s).

The simplest such heuristic is to restrict the search to dictionary terms be-
ginning with the same letter as the query string; the hope is that spelling
errors do not occur in the first character of the query. A more sophisticated
variant of this heuristic is to use a version of the permuterm index, in which
we omit the end-of-word symbol $. Consider the set of all rotations of the
query string q . For each rotation r from this set, we traverse the B-tree into
the permuterm index, thereby retrieving all dictionary terms that have a ro-
tation beginning with r . For instance, if q is mase and we consider the ro-
tation r = sema, we would retrieve dictionary terms such as semantic and
semaphore, which do not have a small edit distance to q . Unfortunately, we
would miss more pertinent dictionary terms such as mare and mane. To ad-
dress this, we refine this rotation scheme: for each rotation, we omit a suffix
of
 characters before performing the B-tree traversal. This ensures that each
term in the set R of terms retrieved from the dictionary includes a “long”
substring in common with q . The value of
 could depend on the length of q .
Alternatively, we may set it to a fixed constant such as 2.

3.3.4 k-Gram indexes for spelling correction

To further limit the set of vocabulary terms for which we compute edit dis-
tances to the query term, we now show how to invoke the k-gram index of
Section 3.2.2 (page 50) to assist with retrieving vocabulary terms with low
edit distance to the query q . Once we retrieve such terms, we can then find
the ones of least edit distance from q .

In fact, we use the k-gram index to retrieve vocabulary terms that have
many k-grams in common with the query. We argue that, for reasonable
definitions of “many k-grams in common,” the retrieval process is essen-
tially that of a single scan through the postings for the k-grams in the query
string q .

The 2-gram (or bigram) index in Figure 3.7 shows (a portion of) the post-
ings for the three bigrams in the query bord. Suppose we wanted to retrieve
vocabulary terms that contained at least two of these three bigrams. A single
scan of the postings (much as in Chapter 1) would let us enumerate all such

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

56 Dictionaries and tolerant retrieval

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

� � � �

� � � �

� � � �

Figure 3.7 Matching at least two of the three 2-grams in the query bord.

terms; in the example of Figure 3.7, we would enumerate aboard, boardroom,
and border.

This straightforward application of the linear scan intersection of postings
immediately reveals the shortcoming of simply requiring matched vocabu-
lary terms to contain a fixed number of k-grams from the query q : terms
like boardroom, an implausible “correction” of bord, get enumerated. Conse-
quently, we require more nuanced measures of the overlap in k-grams be-
tween a vocabulary term and q . The linear scan intersection can be adapted
when the measure of overlap is the Jaccard coefficient for measuring the over-Jaccard

coefficient lap between two sets Aand B, defined to be |A∩ B|/|A∪ B|. The two sets we
consider are the set of k-grams in the query q , and the set of k-grams in a vo-
cabulary term. As the scan proceeds, we proceed from one vocabulary term
t to the next, computing on the fly the Jaccard coefficient between q and t. If
the coefficient exceeds a preset threshold, we add t to the output; if not, we
move on to the next term in the postings. To compute the Jaccard coefficient,
we need the set of k-grams in q and t.

Because we are scanning the postings for all k-grams in q , we immediately
have these k-grams on hand. What about the k-grams of t? In principle, we
could enumerate these on the fly from t. In practice, this is not only slow but
potentially infeasible; in all likelihood, the postings entries themselves do not
contain the complete string t but rather some encoding of t. The crucial ob-
servation is that to compute the Jaccard coefficient, we only need the length
of the string t. To see this, recall the example of Figure 3.7 and consider the
point when the postings scan for query q = bord reaches term t = boardroom.
We know that two bigrams match. If the postings stored the (precomputed)
number of bigrams in boardroom (namely, 8), we have all the information we
require to compute the Jaccard coefficient to be 2/(8 + 3 − 2); the numerator
is obtained from the number of postings hits (2, from bo and rd); the denom-
inator is the sum of the number of bigrams in bord and boardroom, less the
number of postings hits.

We could replace the Jaccard coefficient by other measures that allow ef-
ficient on the fly computation during postings scans. How do we use these
for spelling correction? One method that has some empirical support is to
first use the k-gram index to enumerate a set of candidate vocabulary terms

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.3 Spelling correction 57

that are potential corrections of q . We then compute the edit distance from q
to each term in this set, selecting terms from the set with small edit distance
to q .

3.3.5 Context-sensitive spelling correction

Isolated-term correction would fail to correct typographical errors such as
flew form Heathrow, where all three query terms are correctly spelled. When
a phrase such as this retrieves few documents, a search engine may like to
offer the corrected query flew from Heathrow. The simplest way to do this is to
enumerate corrections of each of the three query terms (using the methods
leading up to Section 3.3.4) even though each query term is correctly spelled,
then try substitutions of each correction in the phrase. For the example flew

form Heathrow, we enumerate such phrases as fled form Heathrow and flew fore

Heathrow. For each such substitute phrase, the search engine runs the query
and determines the number of matching results.

This enumeration can be expensive if we find many corrections of the in-
dividual terms; we could encounter a large number of combinations of alter-
natives. Several heuristics are used to trim this space. In this example, as we
expand the alternatives for flew and form, we retain only the most frequent
combinations in the collection or in the query logs, which contain previous
queries by users. For instance, we would retain flew from as an alternative to
try and extend to a three-term corrected query, but perhaps not fled fore or flea

form. In this example, the biword fled fore is likely to be rare compared with
the biword flew from. Then, we only attempt to extend the list of top biwords
(such as flew from), to corrections of Heathrow. As an alternative to using the
biword statistics in the collection, we may use the logs of queries issued by
users; these could of course include queries with spelling errors.

? Exercise 3.7 If |si | denotes the length of string si , show that the edit distance
between s1 and s2 is never more than max{|s1|, |s2|}.

Exercise 3.8 Compute the edit distance between paris and alice. Write down
the 5 × 5 array of distances between all prefixes as computed by the algo-
rithm in Figure 3.5.

Exercise 3.9 Write pseudocode showing the details of computing on the fly
the Jaccard coefficient while scanning the postings of the k-gram index, as
mentioned on page 56.

Exercise 3.10 Compute the Jaccard coefficients between the query bord and
each of the terms in Figure 3.7 that contain the bigram or.

Exercise 3.11 Consider the four-term query catched in the rye and suppose that
each of the query terms has five alternative terms suggested by isolated-
term correction. How many possible corrected phrases must we consider

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

58 Dictionaries and tolerant retrieval

if we do not trim the space of corrected phrases, but instead try all six
variants for each of the terms?

Exercise 3.12 For each of the prefixes of the query – catched, catched in, and
catched in the – we have a number of substitute prefixes arising from each
term and its alternatives. Suppose that we were to retain only the top ten
of these substitute prefixes, as measured by its number of occurrences in
the collection. We eliminate the rest from consideration for extension to
longer prefixes: thus, if batched in is not one of the ten most common two-
term queries in the collection, we do not consider any extension of batched

in as possibly leading to a correction of catched in the rye. How many of the
possible substitute prefixes are we eliminating at each phase?

Exercise 3.13 Are we guaranteed that retaining and extending only the ten
commonest substitute prefixes of catched in will lead to one of the ten com-
monest substitute prefixes of catched in the?

3.4 Phonetic correction

Our final technique for tolerant retrieval has to do with phonetic correction:
misspellings that arise because the user types a query that sounds like the tar-
get term. Such algorithms are especially applicable to searches on the names
of people. The main idea here is to generate, for each term, a “phonetic hash”
so that similar-sounding terms hash to the same value. The idea owes its
origins to work in international police departments from the early 20th cen-
tury, seeking to match names for wanted criminals despite the names being
spelled differently in different countries. It is mainly used to correct phonetic
misspellings in proper nouns.

Algorithms for such phonetic hashing are commonly collectively known
as soundex algorithms. However, there is an original soundex algorithm, withsoundex

algorithms various variants, built on the following scheme:

1. Turn every term to be indexed into a four-character reduced form. Build
an inverted index from these reduced forms to the original terms; call this
the soundex index.

2. Do the same with query terms.
3. When the query calls for a soundex match, search this soundex index.

The variations in different soundex algorithms have to do with the conver-
sion of terms to four-character forms. A commonly used conversion results
in a four-character code, with the first character being a letter of the alphabet
and the other three being digits between 0 and 9.

1. Retain the first letter of the term.
2. Change all occurrences of the following letters to ’0’ (zero): A, E, I, O, U,

H, W, and Y.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

3.5 References and further reading 59

3. Change letters to digits as follows:
B, F, P, V to 1.
C, G, J, K, Q, S, X, Z to 2.
D, T to 3.
L to 4.
M, N to 5.
R to 6.

4. Repeatedly remove one out of each pair of consecutive identical digits.
5. Remove all zeros from the resulting string. Pad the resulting string with

trailing zeros and return the first four positions, which will consist of a
letter followed by three digits.

For an example of a soundex map, Hermann maps to H655. Given a query
(say herman), we compute its soundex code and then retrieve all vocabulary
terms matching this soundex code from the soundex index, before running
the resulting query on the standard inverted index.

This algorithm rests on a few observations: (1) vowels are viewed as inter-
changeable, in transcribing names; (2) consonants with similar sounds (e.g.,
D and T) are put in equivalence classes. This leads to related names often
having the same soundex codes. Although these rules work for many cases,
especially European languages, such rules tend to be writing-system depen-
dent. For example, Chinese names can be written in Wade-Giles or Pinyin
transcription. Although soundex works for some of the differences in the
two transcriptions – for instance, mapping both Wade-Giles hs and Pinyin
x to 2 – it fails in other cases – for example, Wade-Giles j and Pinyin r are
mapped differently.

? Exercise 3.14 Find two differently spelled proper nouns whose soundex
codes are the same.

Exercise 3.15 Find two phonetically similar proper nouns whose soundex
codes are different.

3.5 References and further reading

Knuth (1997) is a comprehensive source for information on search trees, in-
cluding B-trees and their use in searching through dictionaries.

Garfield (1976) gives one of the first complete descriptions of the per-
muterm index. Ferragina and Venturini (2007) give an approach to address-
ing the space blowup in permuterm indexes.

One of the earliest formal treatments of spelling correction was due to
Damerau (1964). The notion of edit distance that we have used is due to Lev-
enshtein (1965) and the algorithm in Figure 3.5 is due to Wagner and Fischer
(1974). Peterson (1980) and Kukich (1992) developed variants of methods
based on edit distances, culminating in a detailed empirical study of several

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

60 Dictionaries and tolerant retrieval

methods by Zobel and Dart (1995), which shows that k-gram indexing is very
effective for finding candidate mismatches, but should be combined with
a more fine-grained technique such as edit distance to determine the most
likely misspellings. Gusfield (1997) is a standard reference on string algo-
rithms such as edit distance.

Probabilistic models (“noisy channel” models) for spelling correction were
pioneered by Kernighan et al. (1990) and further developed by Brill and
Moore (2000) and Toutanova and Moore (2002). In these models, the mis-
spelled query is viewed as a probabilistic corruption of a correct query. They
have a similar mathematical basis to the language model methods presented
in Chapter 12, and also provide ways of incorporating phonetic similarity,
closeness on the keyboard, and data from the actual spelling mistakes of
users. Many would regard them as the state-of-the-art approach. Cucerzan
and Brill (2004) show how this work can be extended to learning spelling
correction models based on query reformulations in search engine logs.

The soundex algorithm is attributed to Margaret K. Odell and Robert C.
Russelli (from U.S. patents granted in 1918 and 1922); the version described
here draws on Bourne and Ford (1961). Zobel and Dart (1996) evaluate var-
ious phonetic matching algorithms, finding that a variant of the soundex
algorithm performs poorly for general spelling correction, but that other al-
gorithms based on the phonetic similarity of term pronunciations perform
well.

