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10XML retrieval

Information retrieval (IR) systems are often contrasted with relational
databases. Traditionally, IR systems have retrieved information from unstruc-
tured text – by which we mean “raw” text without markup. Databases are
designed for querying relational data, sets of records that have values for pre-
defined attributes such as employee number, title, and salary. There are fun-
damental differences between IR and database systems in terms of retrieval
model, data structures, and query language as shown in Table 10.1.1

Some highly structured text search problems are most efficiently handled
by a relational database; for example, if the employee table contains an at-
tribute for short textual job descriptions and you want to find all employees
who are involved with invoicing. In this case, the SQL query:

select lastname from employees where job_desc like ’invoic%’;

may be sufficient to satisfy your information need with high precision and
recall.

However, many structured data sources containing text are best modeled
as structured documents rather than relational data. We call the search over
such structured documents structured retrieval. Queries in structured retrievalstructured

retrieval can be either structured or unstructured, but we assume in this chapter that
the collection consists only of structured documents. Applications of struc-
tured retrieval include digital libraries, patent databases, blogs, text in which
entities like persons and locations have been tagged (in a process called
named entity tagging), and output from office suites like OpenOffice that save
documents as marked up text. In all of these applications, we want to be able
to run queries that combine textual criteria with structural criteria. Examples
of such queries are give me a full-length article on fast fourier transforms (digital
libraries), give me patents whose claims mention RSA public key encryption and

1 In most modern database systems, one can enable full-text search for text columns. This usu-
ally means that an inverted index is created and Boolean or vector space search enabled,
effectively combining core database with IR technologies.
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Table 10.1 Relational database (RDB) search, unstructured IR, and structured IR. There is no
consensus yet as to which methods work best for structured retrieval, although many researchers
believe that XQuery (page 197) will become the standard for structured queries.

RDB search unstructured retrieval structured retrieval

objects records unstructured documents trees with text at leaves
model relational model vector space & others ?
main data structure table inverted index ?
queries SQL free text queries ?

that cite US patent 4,405,829 (patents), or give me articles about sightseeing

tours of the Vatican and the Coliseum (entity-tagged text). These three queries
are structured queries that cannot be answered well by an unranked re-
trieval system. As we argued in Example 1.1 (page 14), unranked retrieval
models like the Boolean model suffer from low recall. For instance, an un-
ranked system would return a potentially large number of articles that men-
tion the Vatican, the Coliseum, and sightseeing tours without ranking the
ones that are most relevant for the query first. Most users are also noto-
riously bad at precisely stating structural constraints. For instance, users
may not know for which structured elements the search system supports
search. In our example, the user may be unsure whether to issue the query
as sightseeing AND COUNTRY:Vatican AND LANDMARK:Coliseum, as sightseeing AND

STATE:Vatican AND BUILDING:Coliseum or in some other form. Users may also
be completely unfamiliar with structured search and advanced search in-
terfaces or unwilling to use them. In this chapter, we look at how ranked
retrieval methods can be adapted to structured documents to address these
problems.

We will only look at one standard for encoding structured documents: Ex-
tensible markup language or XML, which is currently the most widely usedXML

such standard. We will not cover the specifics that distinguish XML from
other types of markup such as HTML and SGML. But most of what we say
in this chapter is applicable to markup languages in general.

In the context of IR, we are only interested in XML as a language for encod-
ing text and documents. A perhaps more widespread use of XML is to encode
nontext data. For example, we may want to export data in XML format from
an enterprise resource planning system and then read them into an analyt-
ics program to produce graphs for a presentation. This type of application of
XML is called data-centric because numerical and nontext attribute-value datadata-centric

XML dominate and text is usually a small fraction of the overall data. Most data-
centric XML is stored in databases – in contrast to the inverted index-based
methods for text-centric XML that we present in this chapter.

We call XML retrieval structured retrieval in this chapter. Some researchers
prefer the term semistructured retrieval to distinguish XML retrieval fromsemistructured

retrieval database querying. We have adopted the terminology that is widespread in
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<play>

<author>Shakespeare</author>

<title>Macbeth</title>

<act number="I">

<scene number="vii">

<title>Macbeth’s castle</title>

<verse>Will I with wine and wassail ...</verse>

</scene>

</act>

</play>

Figure 10.1 An XML document.

the XML retrieval community. For instance, the standard way of referring to
XML queries is structured queries, not semistructured queries. The term struc-
tured retrieval is rarely used for database querying and it always refers to
XML retrieval in this book.

There is a second type of IR problem that is intermediate between un-
structured retrieval and querying a relational database: parametric and zone
search, which we discussed in Section 6.1 (page 101). In the data model of
parametric and zone search, there are parametric fields (relational attributes
like date or file-size) and zones – text attributes that each take a chunk of un-
structured text as value, for example, author and title in Figure 6.1 (page 101).
The data model is flat; that is, there is no nesting of attributes. The num-
ber of attributes is small. In contrast, XML documents have the more com-
plex tree structure that we see in Figure 10.2, in which attributes are nested.
The number of attributes and nodes is greater than in parametric and zone
search.

After presenting the basic concepts of XML in Section 10.1, this chapter
first discusses the challenges we face in XML retrieval (Section 10.2). Next we
describe a vector space model for XML retrieval (Section 10.3). Section 10.4
presents INEX, a shared task evaluation that has been held for a number of
years and currently is the most important venue for XML retrieval research.
We discuss the differences between data-centric and text-centric approaches
to XML in Section 10.5.

10.1 Basic XML concepts

An XML document is an ordered, labeled tree. Each node of the tree is an
XML element and is written with an opening and closing tag. An element canXML element

have one or more XML attributes. In the XML document in Figure 10.1, theXML
attribute scene element is enclosed by the two tags <scene ...> and </scene>. It has

an attribute number with value vii and two child elements, title and verse.
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root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number=”I”

element

scene

attribute

number=”vii”

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle

Figure 10.2 The XML document in Figure 10.1 as a simplified DOM object.

Figure 10.2 shows Figure 10.1 as a tree. The leaf nodes of the tree consist
of text, for example, Shakespeare, Macbeth, and Macbeth’s castle. The tree’s
internal nodes encode either the structure of the document (title, act, and scene)
or metadata functions (author).

The standard for accessing and processing XML documents is the XML
document object model or DOM. The DOM represents elements, attributes,XML DOM

and text within elements as nodes in a tree. Figure 10.2 is a simplified DOM
representation of the XML document in Figure 10.1.2 With a DOM API, we
can process an XML document by starting at the root element and then de-
scending down the tree from parents to children.

XPath is a standard for enumerating paths in an XML document collection.XPath

We will also refer to paths as XML contexts or simply contexts in this chapter.XML context

Only a small subset of XPath is needed for our purposes. The XPath expres-
sion node selects all nodes of that name. Successive elements of a path are
separated by slashes, so act/scene selects all scene elements whose parent is
an act element. Double slashes indicate that an arbitrary number of elements
can intervene on a path: play//scene selects all scene elements occurring in a
play element. In Figure 10.2, this set consists of a single scene element, which

2 The representation is simplified in a number of respects. For example, we do not show the
root node and text is not embedded in text nodes. See www.w3.org/DOM/.
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//article

[.//yr = 2001 or .//yr = 2002]

//section

[about(.,summer holidays)]

holidayssummer

section

article

Figure 10.3 An XML query in NEXI format and its partial representation as a tree.

is accessible via the path play, act, scene from the top. An initial slash starts the
path at the root element. /play/title selects the play’s title in Figure 10.1,
/play//title selects a set with two members (the play’s title and the scene’s
title), and /scene/title selects no elements. For notational convenience, we
allow the final element of a path to be a vocabulary term and separate it from
the element path by the symbol #, even though this does not conform to the
XPath standard. For example, title#"Macbeth" selects all titles containing
the term Macbeth.

We also need the concept of schema in this chapter. A schema puts con-schema

straints on the structure of allowable XML documents for a particular ap-
plication. A schema for Shakespeare’s plays may stipulate that scenes can
only occur as children of acts and that only acts and scenes have the num-
ber attribute. Two standards for schemas for XML documents are XML DTDXML DTD

(document type definition) and XML schema. Users can only write structuredXML schema

queries for an XML retrieval system if they have some minimal knowledge
about the schema of the collection.

A common format for XML queries is NEXI (Narrowed Extended XPathNEXI

I). We give an example in Figure 10.3. We display the query on four lines for
typographical convenience, but it is intended to be read as one unit without
line breaks. In particular, //section is embedded under //article.

The query in Figure 10.3 specifies a search for sections about the sum-
mer holidays that are part of articles from 2001 or 2002. As in XPath, dou-
ble slashes indicate that an arbitrary number of elements can intervene on a
path. The dot in a clause in square brackets refers to the element the clause
modifies. The clause [.//yr = 2001 or .//yr = 2002] modifies //article.
Thus, the dot refers to //article in this case. Similarly, the dot in [about(.,

summer holidays)] refers to the section that the clause modifies.
The two yr conditions are relational attribute constraints. Only articles

whose yr attribute is 2001 or 2002 (or that contain an element whose yr at-
tribute is 2001 or 2002) are to be considered. The about clause is a ranking
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Figure 10.4 Tree representation of XML documents and queries.

constraint: Sections that occur in the right type of article are to be ranked
according to how relevant they are to the topic summer holidays.

We usually handle relational attribute constraints by prefiltering or post-
filtering: We simply exclude all elements from the result set that do not meet
the relational attribute constraints. In this chapter, we will not address how to
do this efficiently and instead focus on the core information retrieval problem
in XML retrieval, namely, how to rank documents according to the relevance
criteria expressed in the about conditions of the NEXI query.

If we discard relational attributes, we can represent documents as trees
with only one type of node: element nodes. In other words, we remove all
attribute nodes from the XML document, such as, the number attribute in
Figure 10.1. Figure 10.4 shows a subtree of the document in Figure 10.1 as an
element–node tree (labeled d1).

We can represent queries as trees in the same way. This is a query-by-
example approach to query language design because users pose queries by
creating objects that satisfy the same formal description as documents. In Fig-
ure 10.4, q1 is a search for books whose titles score highly for the keywords
Julius Caesar. q2 is a search for books whose author elements score highly for
Julius Caesar and whose title elements score highly for Gallic war.3

10.2 Challenges in XML retrieval

In this section, we discuss a number of challenges that make structured re-
trieval more difficult than unstructured retrieval. Recall from page 178 the
basic setting we assume in structured retrieval: The collection consists of
structured documents and queries are either structured (as in Figure 10.3)
or unstructured (e.g., summer holidays).

3 To represent the semantics of NEXI queries fully, we would also need to designate one node
in the tree as a “target node,” for example, the section in the tree in Figure 10.3. Without the
designation of a target node, the tree in Figure 10.3 is not a search for sections embedded in
articles (as specified by NEXI), but a search for articles that contain sections.
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Figure 10.5 Partitioning an XML document into nonoverlapping indexing units.

The first challenge in structured retrieval is that users want us to return
parts of documents (i.e., XML elements), not entire documents as IR sys-
tems usually do in unstructured retrieval. If we query Shakespeare’s plays
for Macbeth’s castle, should we return the scene, the act, or the entire play in
Figure 10.2? In this case, the user is probably looking for the scene. On the
other hand, an otherwise unspecified search for Macbeth should return the
play of this name, not a subunit.

One criterion for selecting the most appropriate part of a document is the
structured document retrieval principle:structured

document
retrieval
principle

Structured document retrieval principle. A system should always retrieve
the most specific part of a document answering the query.

This principle motivates a retrieval strategy that returns the smallest unit that
contains the information sought, but does not go below this level. However,
it can be hard to implement this principle algorithmically. Consider the query
title#"Macbeth" applied to Figure 10.2. The title of the tragedy, Macbeth, and
the title of Act I, Scene vii, Macbeth’s castle, are both good hits because they
contain the matching term Macbeth. But in this case, the title of the tragedy,
the higher node, is preferred. Deciding which level of the tree is right for
answering a query is difficult.

Parallel to the issue of which parts of a document to return to the user is
the issue of which parts of a document to index. In Section 2.1.2 (page 20), we
discussed the need for a document unit or indexing unit in indexing and re-indexing unit

trieval. In unstructured retrieval, it is usually clear what the right document
unit is: files on your desktop, email messages, Web pages on the Web, and
so on. In structured retrieval, there are a number of different approaches to
defining the indexing unit.

One approach is to group nodes into nonoverlapping pseudodocuments as
shown in Figure 10.5. In the example, books, chapters, and sections have been
designated to be indexing units, but without overlap. For example, the left-
most dashed indexing unit contains only those parts of the tree dominated
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by book that are not already part of other indexing units. The disadvantage
of this approach is that pseudodocuments may not make sense to the user
because they are not coherent units. For instance, the left most indexing unit
in Figure 10.5 merges three disparate elements, the class, author, and title ele-
ments.

We can also use one of the largest elements as the indexing unit, for exam-
ple, the book element in a collection of books or the play element for Shake-
speare’s works. We can then postprocess search results to find for each book
or play the subelement that is the best hit. For example, the query Macbeth’s

castle may return the play Macbeth, which we can then postprocess to identify
act I, scene vii as the best matching subelement. Unfortunately, this two-stage
retrieval process fails to return the best subelement for many queries because
the relevance of a whole book is often not a good predictor of the relevance
of small subelements within it.

Instead of retrieving large units and identifying subelements (top down),
we can also search all leaves, select the most relevant ones, and extend them
to larger units in postprocessing (bottom up). For the query Macbeth’s castle

in Figure 10.1, we would retrieve the title Macbeth’s castle in the first pass and
then decide in a postprocessing step whether to return the title, the scene,
the act, or the play. This approach has a similar problem as the last one: The
relevance of a leaf element is often not a good predictor of the relevance of
elements in which it is contained.

The least restrictive approach is to index all elements. This is also prob-
lematic. Many XML elements are not meaningful search results, for example,
typographical elements like <b>definitely</b> or an ISBN number, which
cannot be interpreted without context. Also, indexing all elements means
that search results will be highly redundant. For the query Macbeth’s castle

and the document in Figure 10.1, we would return all of the play, act, scene,
and title elements on the path between the root node and Macbeth’s castle.
The leaf node would then occur four times in the result set, once directly and
three times as part of other elements. We call elements that are contained
within each other nested. Returning redundant nested elements in a list ofnested

elements returned hits is not very user friendly.
Because of the redundancy caused by nested elements, it is common to re-

strict the set of elements that are eligible to be returned. Restriction strategies
include:

� Discard all small elements� Discard all element types that users do not look at (this requires a working
XML retrieval system that logs this information)� Discard all element types that assessors generally do not judge to be rele-
vant (if relevance assessments are available)� Only keep element types that a system designer or librarian has deemed
to be useful search results
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In most of these approaches, result sets still contain nested elements. Thus,
we may want to remove some elements in a postprocessing step to reduce
redundancy. Alternatively, we can collapse several nested elements in the
results list and use highlighting of query terms to draw the user’s attention
to the relevant passages. If query terms are highlighted, then scanning a
medium-sized element (e.g., a section) takes little more time than scanning a
small subelement (e.g., a paragraph). Thus, if the section and the paragraph
both occur in the results list, it is sufficient to show the section. An additional
advantage of this approach is that the paragraph is presented together with
its context (i.e., the embedding section). This context may be helpful in inter-
preting the paragraph (e.g., the source of the information reported) even if
the paragraph on its own satisfies the query.

If the user knows the schema of the collection and is able to specify the
desired type of element, then the problem of redundancy is alleviated be-
cause few nested elements have the same type. But as we discussed in the
introduction, users often do not know what the name of an element in the
collection is (Is the Vatican a country or a city?) or they may not know how to
compose structured queries at all.

A challenge in XML retrieval related to nesting is that we may need to
distinguish different contexts of a term when we compute term statistics for
ranking, in particular inverse document frequency (idf) statistics as defined
in Section 6.2.1 (page 108). For example, the term Gates under the node author
is unrelated to an occurrence under a content node like section if used to
refer to the plural of gate. It makes little sense to compute a single document
frequency for Gates in this example.

One solution is to compute idf for XML-context/term pairs, for example,
to compute different idf weights for author#"Gates" and section#"Gates".
Unfortunately, this scheme runs into sparse data problems – that is, many
XML–context pairs occur too rarely to reliably estimate document frequency
(see Section 13.2, page 240, for a discussion of sparseness). A compromise
is only to consider the parent node x of the term and not the rest of the
path from the root to x to distinguish contexts. There are still conflations
of contexts that are harmful in this scheme. For instance, we do not dis-
tinguish names of authors and names of corporations if both have the par-
ent node name. But most important distinctions, like the example contrast
author#"Gates" versus section#"Gates", will be respected.

In many cases, several different XML schemas occur in a collection
because the XML documents in an IR application often come from more
than one source. This phenomenon is called schema heterogeneity or schemaschema

heterogeneity diversity and presents yet another challenge. As illustrated in Figure 10.6,
comparable elements may have different names: creator in d2 vs. author in d3.
In other cases, the structural organization of the schemas may be different:
Author names are direct descendants of the node author in q3, but there
are the intervening nodes firstname and lastname in d3. If we employ strict
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book
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book

q3 q4 d2 d3

Figure 10.6 Schema heterogeneity: intervening nodes and mismatched names.

matching of trees, then q3 will retrieve neither d2 nor d3, although both
documents are relevant. Some form of approximate matching of element
names in combination with semiautomatic matching of different document
structures can help here. Human editing of correspondences of elements in
different schemas will usually do better than automatic methods.

Schema heterogeneity is one reason for query–document mismatches like
q3/d2 and q3/d3. Another reason is that users often are not familiar with the
element names and the structure of the schemas of collections they search,
as mentioned. This poses a challenge for interface design in XML retrieval.
Ideally, the user interface should expose the tree structure of the collection
and allow users to specify the elements they are querying. If we take this
approach, then designing the query interface in structured retrieval is more
complex than a search box for keyword queries in unstructured retrieval.

We can also support the user by interpreting all parent–child relationships
in queries as descendant relationships with any number of intervening nodes
allowed. We call such queries extended queries. The tree in Figure 10.3 and q4extended

query in Figure 10.6 are examples of extended queries. We show edges that are
interpreted as descendant relationships as dashed arrows. In q4, a dashed ar-
row connects book and Gates. As a pseudo-XPath notation for q4, we adopt
book//#"Gates": a book that somewhere in its structure contains the word
Gates where the path from the book node to Gates can be arbitrarily long. The
pseudo-XPath notation for the extended query that in addition specifies that
Gates occurs in a section of the book is book//section//#"Gates". It is con-
venient for users to be able to issue such extended queries without having
to specify the exact structural configuration in which a query term should
occur – either because they do not care about the exact configuration or be-
cause they do not know enough about the schema of the collection to be able
to specify it.
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Figure 10.7 A structural mismatch between two queries and a document.

In Figure 10.7, the user is looking for a chapter entitled FFT (q5). Suppose
there is no such chapter in the collection, but that there are references to
books on FFT (d4). A reference to a book on FFT is not exactly what the user
is looking for, but it is better than returning nothing. Extended queries do not
help here. The extended query q6 also returns nothing. This is a case where
we may want to interpret the structural constraints specified in the query as
hints as opposed to as strict conditions. As we will discuss in Section 10.4,
users prefer a relaxed interpretation of structural constraints: Elements that
do not meet structural constraints perfectly should be ranked lower, but they
should not be omitted from search results.

10.3 A vector space model for XML retrieval

In this section, we present a simple vector space model for XML retrieval.
It is not intended to be a complete description of a state-of-the-art system.
Instead, we want to give the reader a flavor of how documents can be repre-
sented and retrieved in XML retrieval.

To take account of structure in retrieval in Figure 10.4, we want a book
entitled Julius Caesar to be a match for q1 and no match (or a lower weighted
match) for q2. In unstructured retrieval, there would be a single dimension
of the vector space for Caesar. In XML retrieval, we must separate the title
word Caesar from the author name Caesar. One way of doing this is to have
each dimension of the vector space encode a word together with its position
within the XML tree.

Figure 10.8 illustrates this representation. We first take each text node
(which in our setup is always a leaf) and break it into multiple nodes, one for
each word. So the leaf node Bill Gates is split into two leaves, Bill and Gates.
Next we define the dimensions of the vector space to be lexicalized subtrees
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Figure 10.8 A mapping of an XML document (left) to a set of lexicalized subtrees (right).

of documents – subtrees that contain at least one vocabulary term. A sub-
set of these possible lexicalized subtrees is shown in the figure, but there are
others – for example, the subtree corresponding to the whole document with
the leaf node Gates removed. We can now represent queries and documents
as vectors in this space of lexicalized subtrees and compute matches between
them. This means that we can use the vector space formalism from Chapter 6
for XML retrieval. The main difference is that the dimensions of vector space
in unstructured retrieval are vocabulary terms, whereas they are lexicalized
subtrees in XML retrieval.

There is a tradeoff between the dimensionality of the space and accuracy
of query results. If we trivially restrict dimensions to vocabulary terms, then
we have a standard vector space retrieval system that will retrieve many
documents that do not match the structure of the query (e.g., Gates in the
title as opposed to the author element). If we create a separate dimension
for each lexicalized subtree occurring in the collection, the dimensionality of
the space becomes too large. A compromise is to index all paths that end in
a single vocabulary term, in other words, all XML-context/term pairs. We
call such an XML-context/term pair a structural term and denote it by 〈c, t〉:structural

term a pair of XML-context c and vocabulary term t. The document in Figure 10.8
has nine structural terms. Seven are shown (e.g., "Bill" and Author#"Bill")
and two are not shown: /Book/Author#"Bill" and /Book/Author#"Gates".
The tree with the leaves Bill and Gates is a lexicalized subtree that is not a
structural term. We use the previously introduced pseudo-XPath notation
for structural terms.

As we discussed in the last section, users are bad at remembering details
about the schema and at constructing queries that comply with the schema.
We will therefore interpret all queries as extended queries – that is, there can
be an arbitrary number of intervening nodes in the document for any parent–
child node pair in the query. For example, we interpret q5 in Figure 10.7
as q6.
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But we still prefer documents that match the query structure closely by
inserting fewer additional nodes. We ensure that retrieval results respect this
preference by computing a weight for each match. A simple measure of the
similarity of a path cq in a query and a path cd in a document is the following
context resemblance function Cr:context

resemblance

Cr(cq , cd ) =
{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd
(10.1)

where |cq | and |cd | are the number of nodes in the query path and document
path, respectively, and cq matches cd iff we can transform cq into cd by insert-
ing additional nodes. Two examples from Figure 10.6 are Cr(cq4 , cd2 ) = 3/4 =
0.75 and Cr(cq4 , cd3 ) = 3/5 = 0.6 where cq4 , cd2 , and cd3 are the relevant paths
from top to leaf node in q4, d2, and d3, respectively. The value of Cr(cq , cd ) is
1.0 if q and d are identical.

The final score for a document is computed as a variant of the cosine mea-
sure (Equation (6.10), page 111), which we call SimNoMerge for reasons that
will become clear shortly. SimNoMerge is defined as follows:

SimNoMerge(q , d)

=
∑
ck∈B

∑
cl∈B

Cr(ck , cl )
∑
t∈V

weight(q , t, ck)
weight(d, t, cl )√∑

c∈B,t∈V weight2(d, t, c)
(10.2)

where V is the vocabulary of nonstructural terms; B is the set of all XML con-
texts; and weight(q , t, c) and weight(d, t, c) are the weights of term t in XML
context c in query q and document d, respectively. We compute the weights
using one of the weightings from Chapter 6, such as, idft · wft,d . The inverse
document frequency idft depends on which elements we use to compute dft,
as discussed in Section 10.2. The similarity measure SimNoMerge(q , d) is not
a true cosine measure because its value can be larger than 1.0 (Exercise 10.11).
We divide by

√∑
c∈B,t∈V weight2(d, t, c) to normalize for document length

(Section 6.3.1, page 111). We have omitted query length normalization to sim-
plify the formula. It has no effect on ranking; for a given query, the normal-

izer
√∑

c∈B,t∈V weight2(q , t, c) is the same for all documents.
The algorithm for computing SimNoMerge for all documents in the col-

lection is shown in Figure 10.9. The array normalizer in Figure 10.9 contains√∑
c∈B,t∈V weight2(d, t, c) from Equation (10.2) for each document.

We give an example of how SimNoMerge computes query–document sim-
ilarities in Figure 10.10. 〈c1, t〉 is one of the structural terms in the query. We
successively retrieve all postings lists for structural terms 〈c′, t〉 with the same
vocabulary term t. Three example postings lists are shown. For the first one,
we have Cr(c1, c1) = 1.0 because the two contexts are identical. The next con-
text has no context resemblance with c1: Cr(c1, c2) = 0 and the corresponding
postings list is ignored. The context match of c1 with c3 is 0.63 > 0, and it
will be processed. In this example, the highest ranking document is d9 with a
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ScoreDocumentsWithSimNoMerge(q , B, V, N, normalizer )
1 for n ← 1 to N
2 do score[n] ← 0
3 for each 〈cq , t〉 ∈ q
4 do wq ← Weight(q , t, cq )
5 for each c ∈ B
6 do if Cr(cq , c) > 0
7 then postings ← GetPostings(〈c, t〉)
8 for each posting ∈ postings
9 do x ← Cr(cq , c) ∗ wq ∗ weight(posting)

10 score[docID(posting)] += x
11 for n ← 1 to N
12 do score[n] ← score[n]/normalizer[n]
13 return score

Figure 10.9 The algorithm for scoring documents with SimNoMerge.

similarity of 1.0 × 0.2 + 0.63 × 0.6 = 0.578. To simplify the figure, the query
weight of 〈c1, t〉 is assumed to be 1.0.

The query–document similarity function in Figure 10.9 is called Sim-
NoMerge because different XML contexts are kept separate for the purpose
of weighting. An alternative similarity function is SimMerge, which relaxes
the matching conditions of query and document further in the following
three ways.

� We collect the statistics used for computing weight(q , t, c) and
weight(d, t, c) from all contexts that have a nonzero resemblance to c (as
opposed to just from c as in SimNoMerge). For instance, for comput-
ing the document frequency of the structural term atl#"recognition",
we also count occurrences of recognition in XML contexts fm/atl,
article//atl etc.

query
〈c1, t〉

Cr(c1, c1)=1.0

Cr(c1, c2)=0

Cr(c1, c3)=0.63

inverted index

〈c1, t〉 −→ 〈d1, 0.5〉 〈d4, 0.1〉 〈d9, 0.2〉 . . .

〈c2, t〉 −→ 〈d2, 0.25〉 〈d3, 0.1〉 〈d12, 0.9〉 . . .

〈c3, t〉 −→ 〈d3, 0.7〉 〈d6, 0.8〉 〈d9, 0.6〉 . . .

Figure 10.10 Scoring of a query with one structural term in SimNoMerge.
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� We modify Equation (10.2) by merging all structural terms in the docu-
ment that have a nonzero context resemblance to a given query structural
term. For example, the contexts /play/act/scene/title and /play/title

in the document will be merged when matching against the query term
/play/title#"Macbeth".� The context resemblance function is further relaxed: Contexts have a non-
zero resemblance in many cases where the definition of Cr in Equa-
tion (10.1) returns 0.

See the references in Section 10.6 for details.
These three changes alleviate the problem of sparse term statistics dis-

cussed in Section 10.2 and increase the robustness of the matching function
against poorly posed structural queries. The evaluation of SimNoMerge and
SimMerge in the next section shows that the relaxed matching conditions of
SimMerge increase the effectiveness of XML retrieval.

? Exercise 10.1 Consider computing the document frequency for a structural
term as the number of times that the structural term occurs under a par-
ticular parent node. Assume the following: The structural term 〈c, t〉 =
author#"Herbert" occurs once as the child of the node squib; there are
ten squib nodes in the collection; 〈c, t〉 occurs 1,000 times as the child of
article; there are 1,000,000 article nodes in the collection. The idf weight
of 〈c, t〉 then is log2 10/1 ≈ 3.3 when occurring as the child of squib and
log2 1,000,000/1000 ≈ 10.0 when occurring as the child of article. (i) Ex-
plain why this is not an appropriate weighting for 〈c, t〉. Why should 〈c, t〉
not receive a weight that is three times higher in articles than in squibs? (ii)
Suggest a better way of computing idf.

Exercise 10.2 Write down all the structural terms occurring in the XML doc-
ument in Figure 10.8.

Exercise 10.3 How many structural terms does the document in Figure 10.1
yield?

10.4 Evaluation of XML retrieval

The premier venue for research on XML retrieval is the INEX (INitiativeINEX

for the Evaluation of XML retrieval) program, a collaborative effort that has
produced reference collections, sets of queries, and relevance judgments. A
yearly INEX meeting is held to present and discuss research results. The
INEX 2002 collection consisted of about 12,000 articles from IEEE journals.
We give collection statistics in Table 10.2 and show part of the schema of the
collection in Figure 10.11. The IEEE journal collection was expanded in 2005.
Since 2006, INEX uses the much larger English Wikipedia as a test collection.
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Table 10.2 INEX 2002 collection statistics.

12,107 number of documents
494 MB size
1995–2002 time of publication of articles
1,532 average number of XML nodes per document
6.9 average depth of a node
30 number of CAS topics
30 number of CO topics

The relevance of documents is judged by human assessors using the method-
ology introduced in Section 8.1 (page 140), appropriately modified for struc-
tured documents as we will discuss shortly.

Two types of information needs or topics in INEX are content-only (CO)
topics and content-and-structure (CAS) topics. CO topics are regular keywordCO topics

queries as in unstructured information retrieval. CAS topics have structuralCAS topics

constraints in addition to keywords. We already encountered an example of a
CAS topic in Figure 10.3. The keywords in this case are summer and holidays,
and the structural constraints specify that the keywords occur in a section
that in turn is part of an article and that this article has an embedded year
attribute with value 2001 or 2002.

Because CAS queries have both structural and content criteria, relevance
assessments are more complicated than in unstructured retrieval. INEX 2002
defined component coverage and topical relevance as orthogonal dimen-
sions of relevance. The component coverage dimension evaluates whether thecomponent

coverage

IEEE Transac-
tion on Pat-
tern Analysis

journal title

Activity
recognition

article title

This work fo-
cuses on . . .

paragraph

Introduction

title

front matter section

body

article

Figure 10.11 Simplified schema of the documents in the INEX collection.
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element retrieved is “structurally” correct, that is, neither too low nor too
high in the tree. We distinguish four cases:

� Exact coverage (E). The information sought is the main topic of the com-
ponent and the component is a meaningful unit of information.� Too small (S). The information sought is the main topic of the component,
but the component is not a meaningful (self-contained) unit of informa-
tion.� Too large (L). The information sought is present in the component, but is
not the main topic.� No coverage (N). The information sought is not a topic of the component.

The topical relevance dimension also has four levels: highly relevant (3),topical
relevance fairly relevant (2), marginally relevant (1), and nonrelevant (0). Components

are judged on both dimensions and the judgments are then combined into
a digit–letter code. 2S is a fairly relevant component that is too small and
3E is a highly relevant component that has exact coverage. In theory, there
are sixteen combinations of coverage and relevance, but many cannot occur.
For example, a nonrelevant component cannot have exact coverage, so the
combination 3N is not possible.

The relevance–coverage combinations are quantized as follows:

Q(rel, cov) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.00 if (rel, cov) = 3E
0.75 if (rel, cov) ∈ {2E, 3L}
0.50 if (rel, cov) ∈ {1E, 2L, 2S}
0.25 if (rel, cov) ∈ {1S, 1L}
0.00 if (rel, cov) = 0N

This evaluation scheme takes account of the fact that binary relevance
judgments, which are standard in unstructured information retrieval (Sec-
tion 8.5.1, page 153), are not appropriate for XML retrieval. A 2S component
provides incomplete information and may be difficult to interpret without
more context, but it does answer the query partially. The quantization func-
tion Q does not impose a binary choice relevant/nonrelevant and instead
allows us to grade the component as partially relevant.

The number of relevant components in a retrieved set A of components
can then be computed as:

#(relevant items retrieved) =
∑
c∈A

Q(rel(c), cov(c)).

As an approximation, the standard definitions of precision, recall and F from
Chapter 8 can be applied to this modified definition of relevant items re-
trieved, with some subtleties because we sum graded as opposed to binary
relevance assessments. See the references on focused retrieval in Section 10.6
for further discussion.
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Table 10.3 INEX 2002 results of the
vector space model in Section 10.3
for CAS queries and the quantization
function Q.

algorithm average precision

SimNoMerge 0.242
SimMerge 0.271

One flaw of measuring relevance this way is that overlap is not accounted
for. We discussed the concept of marginal relevance in the context of un-
structured retrieval in Section 8.5.1 (page 153). This problem is worse in
XML retrieval because of the problem of multiple nested elements occur-
ring in a search result as we discussed on page 185. Much of the recent focus
at INEX has been on developing algorithms and evaluation measures that
return nonredundant results lists and evaluate them properly. See the refer-
ences in Section 10.6.

Table 10.3 shows two INEX 2002 runs of the vector space system we de-
scribed in Section 10.3. The better run is the SimMerge run, which incor-
porates few structural constraints and mostly relies on keyword matching.
SimMerge’s median average precision (where the median is with respect to
average precision numbers over topics) is only 0.147. Effectiveness in XML
retrieval is often lower than in unstructured retrieval because XML retrieval
is harder. Instead of just finding a document, we have to find the subpart of
a document that is most relevant to the query. Also, XML retrieval effective-
ness – when evaluated as described here – can be lower than unstructured
retrieval effectiveness on a standard evaluation because graded judgments
lower measured performance. Consider a system that returns a document
with graded relevance 0.6 and binary relevance 1 at the top of the retrieved
list. Then, interpolated precision at 0.00 recall (cf. page 145) is 1.0 on a binary
evaluation, but can be as low as 0.6 on a graded evaluation.

Table 10.3 gives us a sense of the typical performance of XML retrieval,
but it does not compare structured with unstructured retrieval. Table 10.4
directly shows the effect of using structure in retrieval. The results are for a
language-model–based system (cf. Chapter 12) that is evaluated on a subset
of CAS topics from INEX 2003 and 2004. The evaluation metric is precision

Table 10.4 A comparison of content-only and full-structure search in
INEX 2003/2004.

content only full structure improvement

precision at 5 0.2000 0.3265 63.3%
precision at 10 0.1820 0.2531 39.1%
precision at 20 0.1700 0.1796 5.6%
precision at 30 0.1527 0.1531 0.3%
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at k as defined in Chapter 8 (page 148). The discretization function used for
the evaluation maps highly relevant elements (roughly corresponding to the
3E elements defined for Q) to 1 and all other elements to 0. The content-
only system treats queries and documents as unstructured bags of words.
The full-structure model ranks elements that satisfy structural constraints
higher than elements that do not. For instance, for the query in Figure 10.3
an element that contains the phrase summer holidays in a section will be rated
higher than one that contains it in an abstract.

The table shows that structure helps to increase precision at the top of the
results list. There is a large increase of precision at k = 5 and at k = 10. There
is almost no improvement at k = 30. These results demonstrate the benefits
of structured retrieval. Structured retrieval imposes additional constraints
on what to return and documents that pass the structural filter are more
likely to be relevant. Recall may suffer because some relevant documents
will be filtered out, but for precision-oriented tasks structured retrieval is
superior.

10.5 Text-centric versus data-centric XML retrieval

In the type of structured retrieval we cover in this chapter, XML structure
serves as a framework within which we match the text of the query with
the text of the XML documents. This exemplifies a system that is optimized
for text-centric XML. Although both text and structure are important, wetext-centric

XML give higher priority to text. We do this by adapting unstructured retrieval
methods to handling additional structural constraints. The premise of our
approach is that XML document retrieval is characterized by (i) long text
fields (e.g., sections of a document), (ii) inexact matching, and (iii) relevance-
ranked results. Relational databases do not deal well with this use case.

In contrast, data-centric XML mainly encodes numerical and nontextdata-centric
XML attribute-value data. When querying data-centric XML, we want to impose

exact match conditions in most cases. This puts the emphasis on the struc-
tural aspects of XML documents and queries. An example is:

Find employees whose salary is the same this month as it was 12 months
ago.

This query requires no ranking. It is purely structural and an exact matching
of the salaries in the two time periods is probably sufficient to meet the user’s
information need.

Text-centric approaches are appropriate for data that are essentially text
documents, marked up as XML to capture document structure. This is be-
coming a de facto standard for publishing text databases because most text
documents have some form of interesting structure – paragraphs, sections,
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footnotes, and so on. Examples include assembly manuals, issues of journals,
Shakespeare’s collected works, and newswire articles.

Data-centric approaches are commonly used for data collections with com-
plex structures that mainly contain nontext data. A text-centric retrieval en-
gine will have a hard time with proteomic data in bioinformatics or with
the representation of a city map that (together with street names and other
textual descriptions) forms a navigational database.

Two other types of queries that are difficult to handle in a text-centric struc-
tured retrieval model are joins and ordering constraints. The query for em-
ployees with unchanged salary requires a join. The following query imposes
an ordering constraint:

Retrieve the chapter of the book Introduction to algorithms that follows the
chapter Binomial heaps.

This query relies on the ordering of elements in XML – in this case the order-
ing of chapter elements underneath the book node. There are powerful query
languages for XML that can handle numerical attributes, joins, and order-
ing constraints. The best known of these is XQuery, a language proposed for
standardization by the W3C. It is designed to be broadly applicable in all ar-
eas where XML is used. Due to its complexity, it is challenging to implement
an XQuery-based ranked retrieval system with the performance characteris-
tics that users have come to expect in information retrieval. This is currently
one of the most active areas of research in XML retrieval.

Relational databases are better equipped to handle many structural con-
straints, particularly joins (but ordering is also difficult in a database frame-
work – the tuples of a relation in the relational calculus are not ordered). For
this reason, most data-centric XML retrieval systems are extensions of rela-
tional databases (see the references in Section 10.6). If text fields are short,
exact matching meets user needs and retrieval results in form of unordered
sets are acceptable, then using a relational database for XML retrieval is ap-
propriate.

? Exercise 10.4 Find a reasonably sized XML document collection (or a collec-
tion using a markup language different from XML like HTML) on the web
and download it. Jon Bosak’s XML edition of Shakespeare and of various
religious works at www.ibiblio.org/bosak/ or the first 10,000 documents of the
Wikipedia are good choices. Create three CAS topics of the type shown in
Figure 10.3 that you would expect to do better than analogous CO topics.
Explain why an XML retrieval system would be able to exploit the XML
structure of the documents to achieve better retrieval results on the topics
than an unstructured retrieval system.

Exercise 10.5 For the collection and the topics in Exercise 10.4, (i) are there
pairs of elements e1 and e2, with e2 a subelement of e1 such that both



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

198 XML retrieval

answer one of the topics? Find one case each where (ii) e1 (iii) e2 is the
better answer to the query.

Exercise 10.6 Implement the (i) SimMerge (ii) SimNoMerge algorithm in
Section 10.3 and run it for the collection and the topics in Exercise 10.4.
(iii) Evaluate the results by assigning binary relevance judgments to the
first five documents of the three retrieved lists for each algorithm. Which
algorithm performs better?

Exercise 10.7 Are all of the elements in Exercise 10.4 appropriate to be
returned as hits to a user or are there elements (as in the example
<b>definitely</b> on page 185) that you would exclude?

Exercise 10.8 We discussed the tradeoff between accuracy of results and di-
mensionality of the vector space on page 189. Give an example of an in-
formation need that we can answer correctly if we index all lexicalized
subtrees, but can not answer if we only index structural terms.

Exercise 10.9 If we index all structural terms, what is the size of the index as
a function of text size?

Exercise 10.10 If we index all lexicalized subtrees, what is the size of the in-
dex as a function of text size?

Exercise 10.11 Give an example of a query–document pair for which
SimNoMerge(q , d) is larger than 1.0.

10.6 References and further reading

There are many good introductions to XML, including (Harold and Means
2004). Table 10.1 is inspired by a similar table in (van Rijsbergen 1979). Sec-
tion 10.4 follows the overview of INEX 2002 by Gövert and Kazai (2003),
published in the proceedings of the meeting (Fuhr et al. 2003a). The pro-
ceedings of the four following INEX meetings were published as Fuhr et al.
(2003b), Fuhr et al. (2005), Fuhr et al. (2006), and Fuhr et al. (2007). An up-to-
date overview article is Fuhr and Lalmas (2007). The results in Table 10.4 are
from (Kamps et al. 2006). Chu-Carroll et al. (2006) also present evidence that
XML queries increase precision compared with unstructured queries. Instead
of coverage and relevance, INEX now evaluates on the related but differ-
ent dimensions of exhaustivity and specificity (Lalmas and Tombros 2007).
Trotman et al. (2006) relate the tasks investigated at INEX to real-world uses
of structured retrieval such as structured book search on Internet bookstore
sites.

The structured document retrieval principle is due to Chiaramella et al.
(1996). Figure 10.5 is from (Fuhr and Großjohann 2004). Rahm and Bernstein
(2001) give a survey of automatic schema matching that is applicable to XML.
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The vector-space–based XML retrieval method in Section 10.3 is essentially
IBM Haifa’s JuruXML system as presented by Mass et al. (2003) and Carmel
et al. (2003). Schlieder and Meuss (2002) and Grabs and Schek (2002) describe
similar approaches. Carmel et al. (2003) represent queries as XML fragments.XML

fragment The trees that represent XML queries in this chapter are all XML fragments,
but XML fragments also permit the operators +, −, and phrase on content
nodes.

We chose to present the vector space model for XML retrieval because it
is simple and a natural extension of the unstructured vector space model in
Chapter 6. But many other unstructured retrieval methods have been ap-
plied to XML retrieval with at least as much success as the vector space
model. These methods include language models (cf. Chapter 12; e.g., Kamps
et al. (2004), List et al. (2005), Ogilvie and Callan (2005)), systems that use
a relational database as a backend (Mihajlović et al. 2005; Theobald et al.
2005, 2008), probabilistic weighting (Lu et al. 2007), and fusion (Larson 2005).
There is currently no consensus as to what the best approach to XML re-
trieval is.

Most early work on XML retrieval accomplished relevance ranking by fo-
cusing on individual terms, including their structural contexts, in query and
document. As in unstructured IR, there is a trend in more recent work to
model relevance ranking as combining evidence from disparate measure-
ments about the query, the document, and their match. The combination
function can be tuned manually (Arvola et al. 2005; Sigurbjörnsson et al.
2004) or trained using machine learning methods (Vittaut and Gallinari
(2006), cf. Section 15.4.1, page 314).

An active area of XML retrieval research is focused retrieval (Trotman et al.focused
retrieval 2007), which aims to avoid returning nested elements that share one or more

common subelements (cf. discussion in Section 10.2, page 185). There is ev-
idence that users dislike redundancy caused by nested elements (Betsi et al.
2006). Focused retrieval requires evaluation measures that penalize redun-
dant results lists (Kazai and Lalmas 2006; Lalmas et al. 2007). Trotman and
Geva (2006) argue that XML retrieval is a form of passage retrieval. In passagepassage

retrieval retrieval (Salton et al. 1993; Hearst and Plaunt 1993; Zobel et al. 1995; Hearst
1997; Kaszkiel and Zobel 1997), the retrieval system returns short passages
instead of documents in response to a user query. Although element bound-
aries in XML documents are cues for identifying good segment boundaries
between passages, the most relevant passage often does not coincide with an
XML element.

In the last several years, the query format at INEX has been the NEXI stan-
dard proposed by Trotman and Sigurbjörnsson (2004). Figure 10.3 is from
their paper. O’Keefe and Trotman (2004) give evidence that users cannot re-
liably distinguish the child and descendant axes. This justifies only permit-
ting descendant axes in NEXI (and XML fragments). These structural con-
straints were only treated as “hints” in recent INEXes. Assessors can judge an
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element highly relevant, even though it violates one of the structural con-
straints specified in a NEXI query.

An alternative to structured query languages like NEXI is a more sophisti-
cated user interface for query formulation (Tannier and Geva 2005; van Zwol
et al. 2006; Woodley and Geva 2006).

A broad overview of XML retrieval that covers database as well as IR ap-
proaches is given by Amer-Yahia and Lalmas (2006) and an extensive ref-
erence list on the topic can be found in (Amer-Yahia et al. 2005). Chapter 6
of Grossman and Frieder 2004 is a good introduction to structured text re-
trieval from a database perspective. The proposed standard for XQuery is
available at www.w3.org/TR/xquery/ including an extension for full-text queries
(Amer-Yahia et al. 2006): www.w3.org/TR/xquery-full-text/. Work that has looked
at combining the relational database and the unstructured information re-
trieval approaches includes (Fuhr and Rölleke 1997); (Navarro and Baeza-
Yates 1997); (Cohen 1998); and (Chaudhuri et al. 2006).


