

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14Vector space classification

The document representation in Naive Bayes is a sequence of terms or a
binary vector 〈e1, . . . , eM〉 ∈ {0, 1}|V|. In this chapter, we adopt a different
representation for text classification, the vector space model, developed in
Chapter 6. It represents each document as a vector with one real-valued com-
ponent, usually a tf–idf weight, for each term. Thus, the document space X,
the domain of the classification function γ , is R

|V|. This chapter introduces a
number of classification methods that operate on real-valued vectors.

The basic hypothesis in using the vector space model for classification is
the contiguity hypothesis.contiguity

hypothesis

Contiguity hypothesis. Documents in the same class form a contiguous
region and regions of different classes do not overlap.

There are many classification tasks, in particular the type of text classification
that we encountered in Chapter 13, where classes can be distinguished by
word patterns. For example, documents in the class China tend to have high
values on dimensions like Chinese, Beijing, and Mao, whereas documents in
the class UK tend to have high values for London, British, and Queen. Docu-
ments of the two classes therefore form distinct contiguous regions as shown
in Figure 14.1 and we can draw boundaries that separate them and classify
new documents. How exactly this is done is the topic of this chapter.

Whether or not a set of documents is mapped into a contiguous region de-
pends on the particular choices we make for the document representation:
type of weighting, stop list, and so on. To see that the document represen-
tation is crucial, consider the two classes written by a group versus written by
a single person. Frequent occurrence of the first person pronoun I is evidence
for the single-person class. But that information is likely deleted from the
document representation if we use a stop list. If the document representation
chosen is unfavorable, the contiguity hypothesis will not hold and successful
vector space classification is not possible.

266

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.1 Document representations and measures of relatedness in vector spaces 267

The same considerations that led us to prefer weighted representations,
in particular length-normalized tf–idf representations, in Chapters 6 and 7
also apply here. For example, a term with five occurrences in a document
should get a higher weight than a term with one occurrence, but a weight
five times larger would give too much emphasis to the term. Unweighted
and unnormalized counts should not be used in vector space classification.

We introduce two vector space classification methods in this chapter, Roc-
chio and kNN. Rocchio classification (Section 14.2) divides the vector space
into regions centered on centroids or prototypes, one for each class, computedprototype

as the center of mass of all documents in the class. Rocchio classification is
simple and efficient, but inaccurate if classes are not approximately spheres
with similar radii.

kNN or k nearest neighbor classification (Section 14.3) assigns the majority
class of the k nearest neighbors to a test document. kNN requires no explicit
training and can use the unprocessed training set directly in classification. It
is less efficient than other classification methods in classifying documents. If
the training set is large, then kNN can handle nonspherical and other com-
plex classes better than Rocchio.

A large number of text classifiers can be viewed as linear classifiers –
classifiers that classify based on a simple linear combination of the features
(Section 14.4). Such classifiers partition the space of features into regions
separated by linear decision hyperplanes, in a manner to be detailed below.
Because of the bias-variance tradeoff (Section 14.6) more complex nonlinear
models are not systematically better than linear models. Nonlinear models
have more parameters to fit on a limited amount of training data and are
more likely to make mistakes for small and noisy data sets.

When applying two-class classifiers to problems with more than two
classes, there are one-of tasks – a document must be assigned to exactly one
of several mutually exclusive classes – and any-of tasks – a document can be
assigned to any number of classes as we will explain in Section 14.5. Two-
class classifiers solve any-of problems and can be combined to solve one-of
problems.

14.1 Document representations and measures of relatedness
in vector spaces

As in Chapter 6, we represent documents as vectors in R
|V| in this chapter.

To illustrate properties of document vectors in vector classification, we will
render these vectors as points in a plane as in the example in Figure 14.1.
In reality, document vectors are length-normalized unit vectors that point to
the surface of a hypersphere. We can view the two-dimensional (2D) planes
in our figures as projections onto a plane of the surface of a (hyper-)sphere

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

268 Vector space classification

�

�

�

�

�

�
�

�

�

xx
x

x

�
�

��
�

�

China

Kenya

UK

	

Figure 14.1 Vector space classification into three classes.

as shown in Figure 14.2. Distances on the surface of the sphere and on the
projection plane are approximately the same as long as we restrict ourselves
to small areas of the surface and choose an appropriate projection (Exer-
cise 14.1).

Decisions of many vector space classifiers are based on a notion of dis-
tance, such as when computing the nearest neighbors in kNN classification.
We will use Euclidean distance in this chapter as the underlying distance
measure. We observed earlier (Exercise 6.18, page 121) that there is a direct
correspondence between cosine similarity and Euclidean distance for length-
normalized vectors. In vector space classification, it rarely matters whether
the relatedness of two documents is expressed in terms of similarity or dis-
tance.

d tru
e

dprojected

x

´ ´ ´ ´ ´

´ ´ ´ ´ ´1

x2 x3 x4

x5

x1 x2 x3 x4 x5

x1 x2 x3
x4 x5

Figure 14.2 Projections of small areas of the unit sphere preserve distances. Left: A projection of
the 2D semicircle to 1D. For the points x1, x2, x3, x4, x5 at x coordinates −0.9, −0.2, 0, 0.2, 0.9 the
distance |x2x3| ≈ 0.201 only differs by 0.5% from |x′

2x′
3| = 0.2; but |x1x3|/|x′

1x′
3| = dtrue/dprojected ≈

1.06/0.9 ≈ 1.18 is an example of a large distortion (18%) when projecting a large area. Right: The
corresponding projection of the 3D hemisphere to 2D.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.2 Rocchio classification 269

However, in addition to documents, centroids or averages of vectors also
play an important role in vector space classification. Centroids are not length
normalized. For unnormalized vectors, dot product, cosine similarity, and
Euclidean distance all have different behaviors in general (Exercise 14.6). We
are mostly concerned with small local regions when computing the similarity
between a document and a centroid, and the smaller the region the more
similar the behavior of the three measures is.

? Exercise 14.1 For small areas, distances on the surface of the hypersphere
are approximated well by distances on its projection (Figure 14.2) because
α ≈ sin α for small angles. For what size angle is the distortion α/ sin(α) (i)
1.01, (ii) 1.05 and (iii) 1.1?

14.2 Rocchio classification

Figure 14.1 shows three classes, China, UK, and Kenya, in a 2D space. Docu-
ments are shown as circles, diamonds, and Xs. The boundaries in the figure,
which we call decision boundaries, are chosen to separate the three classes,decision

boundary but are otherwise arbitrary. To classify a new document, depicted as a star
in the figure, we determine the region it occurs in and assign it the class of
that region – China in this case. Our task in vector space classification is to
devise algorithms that compute good boundaries where “good” means high
classification accuracy on data unseen during training.

The main work we must do in vector space classification is to define the
boundaries between classes because they determine the classification deci-
sion. Perhaps the best-known way of doing this is Rocchio classification, whichRocchio

classification uses centroids to define the boundaries. The centroid of a class c is computed
centroid as the vector average or center of mass of its members:

�µ(c) = 1
|Dc |

∑
d∈Dc

�v(d),(14.1)

where Dc is the set of documents in D whose class is c: Dc = {d : 〈d, c〉 ∈ D}.
We denote the normalized vector of d by �v(d) (Equation (6.11), page 111).
Three example centroids are shown as solid circles in Figure 14.3.

The boundary between two classes in Rocchio classification is the set of
points with equal distance from the two centroids. For example, |a1| = |a2|,
|b1| = |b2|, and |c1| = |c2| in the figure. This set of points is always a line. The
generalization of a line in M-dimensional space is a hyperplane, which we
define as the set of points �x that satisfy:

�wT �x = b(14.2)

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

270 Vector space classification

�

�

�

�

�

�
�

�

�

xx
x

x

�
� ��

�

�

China

Kenya

UK�

�

�

	 a1

a2

b1

b2

c1

c2

Figure 14.3 Rocchio classification.

where �w is the M-dimensional normal vector1 of the hyperplane and b is anormal
vector constant. This definition of hyperplanes includes lines (any line in 2D can be

defined by w1x1 + w2x2 = b) and 2-dimensional planes (any plane in three
dimensions (3D) can be defined by w1x1 + w2x2 + w3x3 = b). A line divides
a plane in two, a plane divides 3D space in two, and hyperplanes divide
higher-dimensional spaces in two.

Thus, the boundaries of class regions in Rocchio classification are hyper-
planes. The classification rule in Rocchio is to classify a point in accordance
with the region it falls into. Equivalently, we determine the centroid �µ(c) that
the point is closest to and then assign it to c. As an example, consider the
star in Figure 14.3. It is located in the China region of the space and Rocchio
therefore assigns it to China. We show the Rocchio algorithm in pseudocode
in Figure 14.4.

✎ Example 14.1: Table 14.1 shows the tf–idf vector representations of
the five documents in Table 13.1 (page 241), using the formula (1 +
log10 tft,d) log10(4/dft) if tft,d > 0 (Equation (6.14), page 117). The two class
centroids are µc = 1/3 · (�d1 + �d2 + �d3) and µc = 1/1 · (�d4). The distances of
the test document from the centroids are |µc − �d5| ≈ 1.15 and |µc − �d5| =
0.0. Thus, Rocchio assigns d5 to c.

The separating hyperplane in this case has the following parameters:

�w ≈ (0 − 0.71 − 0.71 1/3 1/3 1/3)T

b = −1/3

See Exercise 14.15 for how to compute �w and b. We can easily verify that
this hyperplane separates the documents as desired:

1 Recall from basic linear algebra that �v · �w = �vT �w, that is, the dot product of �v and �w equals
the product by matrix multiplication of the transpose of �v and �w.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.2 Rocchio classification 271

TrainRocchio(C, D)
1 for each c j ∈ C

2 do Dj ← {d : 〈d, c j 〉 ∈ D}
3 �µ j ← 1

|Dj |
∑

d∈Dj
�v(d)

4 return { �µ1, . . . , �µJ }

ApplyRocchio({ �µ1, . . . , �µJ }, d)
1 return arg min j | �µ j − �v(d)|

Figure 14.4 Rocchio classification: Training and testing.

�wT �d1 ≈ 0 · 0 + −0.71 · 0 + −0.71 · 0 + 1/3 · 0 + 1/3 · 1.0 + 1/3 · 0 = 1/3 > b
(and, similarly, �wT �di > b for 2 ≤ i ≤ 3) and �wT �d4 = −1 < b. Thus, docu-
ments in c are above the hyperplane (�wT �d > b) and documents in c are
below the hyperplane (�wT �d < b).

The assignment criterion in Figure 14.4 is Euclidean distance. An alterna-
tive is cosine similarity:

Assign d to class c = arg max
c′

cos(�µ(c′), �v(d)).

As discussed in Section 14.1, the two assignment criteria will sometimes
make different classification decisions. We present the Euclidean distance
variant of Rocchio classification here because it emphasizes Rocchio’s close
correspondence to K -means clustering (Section 16.4, page 331).

Rocchio classification is a form of Rocchio relevance feedback (Sec-
tion 9.1.1, page 163). The average of the relevant documents, corresponding
to the most important component of the Rocchio vector in relevance feed-
back (Equation (9.3), page 166), is the centroid of the “class” of relevant doc-
uments. We omit the query component of the Rocchio formula in Rocchio
classification because there is no query in text classification. Rocchio classifi-
cation can be applied to J > 2 classes, whereas Rocchio relevance feedback
is designed to distinguish only two classes, relevant and nonrelevant.

Table 14.1 Vectors and class centroids for the data in Table 13.1.

term weights

vector Chinese Japan Tokyo Macao Beijing Shanghai

�d1 0 0 0 0 1.0 0
�d2 0 0 0 0 0 1.0
�d3 0 0 0 1.0 0 0
�d4 0 0.71 0.71 0 0 0

�d5 0 0.71 0.71 0 0 0

�µc 0 0 0 0.33 0.33 0.33
�µc 0 0.71 0.71 0 0 0

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

272 Vector space classification

a

a

a

a

a

a

a
a

a

a

a
a

a
a

a a

aa

a

a

a

a

a

a

a

a

a

a

a

a
a

a
a

aa

a
a

a
a

a

b
b

b
b

b
b

b
b

b

b

b
b
b

b

b

b

b

b

b

X XA

B

o

Figure 14.5 The multimodal class “a” consists of two different clusters (small upper circles cen-
tered on Xs). Rocchio classification will misclassify “o” as “a” because it is closer to the centroid
A of the “a” class than to the centroid B of the “b” class.

In addition to respecting contiguity, the classes in Rocchio classification
must be approximate spheres with similar radii. In Figure 14.3, the solid
square just below the boundary between UK and Kenya is a better fit for the
class UK because UK is more scattered than Kenya. But Rocchio assigns it to
Kenya because it ignores details of the distribution of points in a class and
only uses distance from the centroid for classification.

The assumption of sphericity also does not hold in Figure 14.5. We can-
not represent the “a” class well with a single prototype because it has two
clusters. Rocchio often misclassifies this type of multimodal class. A text clas-multimodal

class sification example for multimodality is a country like Burma, which changed
its name to Myanmar in 1989. The two clusters before and after the name
change need not be close to each other in space. We also encountered the
problem of multimodality in relevance feedback (Section 9.1.2, page 169).

Two-class classification is another case where classes are rarely distributed
like spheres with similar radii. Most two-class classifiers distinguish between
a class like China that occupies a small region of the space and its widely
scattered complement. Assuming equal radii will result in a large number
of false positives. Most two-class classification problems therefore require a
modified decision rule of the form:

Assign d to class c iff | �µ(c) − �v(d)| < | �µ(c) − �v(d)| − b

for a positive constant b. As in Rocchio relevance feedback, the centroid of
the negative documents is often not used at all, so that the decision criterion
simplifies to | �µ(c) − �v(d)| < b′ for a positive constant b′.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.3 k nearest neighbor 273

Table 14.2 Training and test times for Roc-
chio classification. Lave is the average number
of tokens per document. La and Ma are the
numbers of tokens and types, respectively, in
the test document. Computing Euclidean dis-
tance between the class centroids and a docu-
ment is �(|C|Ma).

mode time complexity

training �(|D|Lave + |C||V|)
testing �(La + |C|Ma) = �(|C|Ma)

Table 14.2 gives the time complexity of Rocchio classification.2 Adding
all documents to their respective vector sum is �(|D|Lave) (as opposed to
�(|D|V|)) because we need only consider nonzero entries. Dividing each vec-
tor sum by the size of its class to compute the centroid is �(|V|). Overall,
training time is linear in the size of the collection (cf. Exercise 13.1). Thus,
Rocchio classification and Naive Bayes have the same linear training time
complexity.

In the next section, we will introduce another vector space classification
method, kNN, that deals better with classes that have non-spherical, discon-
nected or other irregular shapes.

? Exercise 14.2 [] Show that Rocchio classification can assign a label to a doc-
ument that is different from its training set label.

14.3 k nearest neighbor

Unlike Rocchio, k nearest neighbor or kNN classification determines the deci-k nearest
neighbor

classification
sion boundary locally. For 1NN we assign each document to the class of its
closest neighbor. For kNN we assign each document to the majority class of
its k closest neighbors where k is a parameter. The rationale of kNN classifi-
cation is that, based on the contiguity hypothesis, we expect a test document
d to have the same label as the training documents located in the local region
surrounding d.

Decision boundaries in 1NN are concatenated segments of the Voronoi tes-Voronoi
tessellation sellation as shown in Figure 14.6. The Voronoi tessellation of a set of objects

decomposes space into Voronoi cells, where each object’s cell consists of all
points that are closer to the object than to other objects. In our case, the ob-
jects are documents. The Voronoi tessellation then partitions the plane into
|D| convex polygons, each containing its corresponding document (and no
other) as shown in Figure 14.6, where a convex polygon is a convex region in
2D space bounded by lines.

2 We write �(|D|Lave) for �(T) and assume that the length of test documents is bounded as
we did on page 242.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

274 Vector space classification

x

x

x x

x

x x

x
x x

x

�

�

�

�

�

�
�

�

�
�

�

�

�

�
��

� �

	

Figure 14.6 Voronoi tessellation and decision boundaries (double lines) in 1NN classification.
The three classes are: X, circle and diamond.

For general k ∈ N in kNN, consider the region in the space for which the
set of k nearest neighbors is the same. This again is a convex polygon and the
space is partitioned into convex polygons, within each of which the set of k
nearest neighbors is invariant (Exercise 14.11).3

1NN is not very robust. The classification decision of each test document
relies on the class of a single training document, which may be incorrectly
labeled or atypical. kNN for k > 1 is more robust. It assigns documents to
the majority class of their k closest neighbors, with ties broken randomly.

There is a probabilistic version of this kNN classification algorithm. We
can estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c. Figure 14.6 gives an example for k = 3. Prob-
ability estimates for class membership of the star are P̂(circle class|star) =
1/3, P̂(X class|star) = 2/3, and P̂(diamond class|star) = 0. The 3NN estimate
(P̂1(circle class|star) = 1/3) and the 1NN estimate (P̂1(circle class|star) = 1)
differ with 3NN preferring the X class and 1NN preferring the circle class.

The parameter k in kNN is often chosen based on experience or knowledge
about the classification problem at hand. It is desirable for k to be odd to
make ties less likely. k = 3 and k = 5 are common choices, but much larger
values, between 50 and 100, are also used. An alternative way of setting the
parameter is to select the k that gives best results on a held-out portion of the
training set.

3 The generalization of a polygon to higher dimensions is a polytope. A polytope is a re-
gion in M-dimensional space bounded by (M − 1)-dimensional hyperplanes. In M dimen-
sions, the decision boundaries for kNN consist of segments of (M − 1)-dimensional hyper-
planes that form the Voronoi tessellation into convex polytopes for the training set of doc-
uments. The decision criterion of assigning a document to the majority class of its k nearest
neighbors applies equally to M = 2 (tessellation into polygons) and M > 2 (tessellation into
polytopes).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.3 k nearest neighbor 275

Train-kNN(C, D)
1 D

′ ← Preprocess(D)
2 k ← Select-k(C, D

′)
3 return D

′, k

Apply-kNN(C, D
′, k, d)

1 Sk ← ComputeNearestNeighbors(D′, k, d)
2 for each c j ∈ C

3 do p j ← |Sk ∩ c j |/k
4 return arg max j p j

Figure 14.7 kNN training (with preprocessing) and testing. p j is an estimate for P(c j |Sk) =
P(c j |d). c j denotes the set of all documents in the class c j .

We can also weight the “votes” of the k nearest neighbors by their cosine
similarity. In this scheme, a class’s score is computed as:

score(c, d) =
∑
d ′∈Sk

Ic(d ′) cos(�v(d ′), �v(d))

where Sk is the set of d’s k nearest neighbors and Ic(d ′) = 1 iff d ′ is in class c
and 0 otherwise. We then assign the document to the class with the highest
score. Weighting by similarities is often more accurate than simple voting.
For example, if two classes have the same number of neighbors in the top k,
the class with the more similar neighbors wins.

Figure 14.7 summarizes the kNN algorithm.

✎ Example 14.2: The distances of the test document from the four train-
ing documents in Table 14.1 are | �d1 − �d5| = | �d2 − �d5| = | �d3 − �d5| ≈ 1.41 and
| �d4 − �d5| = 0.0. d5’s nearest neighbor is therefore d4 and 1NN assigns d5 to
d4’s class, c.

✄14.3.1 Time complexity and optimality of k nearest neighbor

Table 14.3 gives the time complexity of kNN. kNN has properties that are
quite different from most other classification algorithms. Training a kNN
classifier simply consists of determining k and preprocessing documents. In
fact, if we preselect a value for k and do not preprocess, then kNN requires
no training at all. In practice, we have to perform preprocessing steps like
tokenization. It makes more sense to preprocess training documents once as
part of the training phase rather than repeatedly every time we classify a new
test document.

Test time is �(|D|Mave Ma) for kNN. It is linear in the size of the training
set; we need to compute the distance of each training document from the

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

276 Vector space classification

Table 14.3 Training and test times for kNN classifi-
cation. Mave is the average size of the vocabulary of
documents in the collection.

kNN with preprocessing of training set
training �(|D|Lave)
testing �(La + |D|Mave Ma) = �(|D|Mave Ma)

kNN without preprocessing of training set
training �(1)
testing �(La + |D|Lave Ma) = �(|D|Lave Ma)

test document. Test time is independent of the number of classes J . kNN
therefore has a potential advantage for problems with large J .

In kNN classification, we do not perform any estimation of parameters as
we do in Rocchio classification (centroids) or in Naive Bayes (priors and con-
ditional probabilities). kNN simply memorizes all examples in the training
set and then compares the test document to them. For this reason, kNN is also
called memory-based learning or instance-based learning. It is usually desirablememory-

based
learning

to have as much training data as possible in machine learning. But in kNN,
large training sets come with a severe efficiency penalty in classification.

Can kNN testing be made more efficient than �(|D|Mave Ma) or, ignoring
the length of documents, more efficient than �(|D|)? There are fast kNN al-
gorithms for small dimensionality M (Exercise 14.12). There are also approx-
imations for large M that give error bounds for specific efficiency gains (see
Section 14.7). These approximations have not been extensively tested for text
classification applications, so it is not clear whether they can achieve much
better efficiency than �(|D|) without a significant loss of accuracy.

The reader may have noticed the similarity between the problem of finding
nearest neighbors of a test document and ad hoc retrieval, where we search
for the documents with the highest similarity to the query (Section 6.3.2,
page 113). In fact, the two problems are both k nearest neighbor problems
and only differ in the relative density of (the vector of) the test document
in kNN (10s or 100s of non-zero entries) versus the sparseness of (the vec-
tor of) the query in ad hoc retrieval (usually fewer than ten nonzero entries).
We introduced the inverted index for efficient ad hoc retrieval in Section 1.1
(page 5). Is the inverted index also the solution for efficient kNN?

An inverted index restricts a search to those documents that have at least
one term in common with the query. Thus, in the context of kNN, the in-
verted index will be efficient if the test document has no term overlap with
a large number of training documents. Whether this is the case depends on
the classification problem. If documents are long and no stop list is used,
then less time will be saved. But with short documents and a large stop list,
an inverted index may well cut the average test time by a factor of 10 or more.

The search time in an inverted index is a function of the length of the post-
ings lists of the terms in the query. Postings lists grow sublinearly with the
length of the collection since the vocabulary increases according to Heaps’

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.4 Linear versus nonlinear classifiers 277

law – if the probability of occurrence of some terms increases, then the prob-
ability of occurrence of others must decrease. However, most new terms are
infrequent. We therefore take the complexity of inverted index search to be
�(T) (as discussed in Section 2.4.2, page 38) and, assuming average docu-
ment length does not change over time, �(T) = �(|D|).

As we will see in Chapter 15, kNN’s effectiveness is close to that of the
most accurate learning methods in text classification (Table 15.2, page 307). A
measure of the quality of a learning method is its Bayes error rate, the averageBayes error

rate error rate of classifiers learned by it for a particular problem. kNN is not
optimal for problems with a nonzero Bayes error rate, that is, for problems
where even the best possible classifier has a nonzero classification error. The
error of 1NN is asymptotically (as the training set increases) bounded by
twice the Bayes error rate. That is, if the optimal classifier has an error rate
of x, then 1NN has an asymptotic error rate of 2x. This is due to the effect of
noise – we already saw one example of noise in the form of noisy features in
Section 13.5 (page 251), but noise can also take other forms as we will discuss
in the next section. Noise affects two components of kNN: the test document
and the closest training document. The two sources of noise are additive, so
the overall error of 1NN is twice the optimal error rate. For problems with
Bayes error rate 0, the error rate of 1NN will approach 0 as the size of the
training set increases.

? Exercise 14.3 Explain why kNN handles multimodal classes better than
Rocchio.

14.4 Linear versus nonlinear classifiers

In this section, we show that the two learning methods – Naive Bayes and
Rocchio – are instances of linear classifiers, the perhaps most important
group of text classifiers, and contrast them with nonlinear classifiers. To sim-
plify the discussion, we will only consider two-class classifiers in this section
and define a linear classifier as a two-class classifier that decides class mem-linear

classifier bership by comparing a linear combination of the features to a threshold.
In two dimensions, a linear classifier is a line. Five examples are shown in

Figure 14.8. These lines have the functional form w1x1 + w2x2 = b. The classi-
fication rule of a linear classifier is to assign a document to c if w1x1 + w2x2 >

b and to c if w1x1 + w2x2 ≤ b. Here, (x1, x2)T is the 2D vector representation
of the document and (w1, w2)T is the parameter vector that defines (together
with b) the decision boundary. An alternative geometric interpretation of a
linear classifier is provided in Figure 15.7 (page 316).

We can generalize this 2D linear classifier to higher dimensions by defining
a hyperplane as we did in Equation (14.2), repeated here as Equation (14.3):

�wT �x = b.(14.3)

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

278 Vector space classification

Figure 14.8 There are an infinite number of hyperplanes that separate two linearly separable
classes.

The assignment criterion then is: assign to c if �wT �x > b and to c if �wT �x ≤ b.
We call a hyperplane that we use as a linear classifier a decision hyperplane.decision

hyperplane The corresponding algorithm for linear classification in M dimensions is
shown in Figure 14.9. Linear classification at first seems trivial given the sim-
plicity of this algorithm. However, the difficulty is in training the linear clas-
sifier, that is, in determining the parameters �w and b based on the training set.
In general, some learning methods compute much better parameters than
others where our criterion for evaluating the quality of a learning method is
the effectiveness of the learned linear classifier on new data.

We now show that Rocchio and Naive Bayes are linear classifiers. To see
this for Rocchio, observe that a vector �x is on the decision boundary if it has
equal distance to the two class centroids:

| �µ(c1) − �x| = | �µ(c2) − �x|.(14.4)

Some basic arithmetic shows that this corresponds to a linear classifier
with normal vector �w = �µ(c1) − �µ(c2) and b = 0.5 ∗ (| �µ(c1)|2 − |�µ(c2)|2) (Ex-
ercise 14.15).

We can derive the linearity of Naive Bayes from its decision rule, which
chooses the category c with the largest P̂(c|d) (Figure 13.2, page 241) where:

P̂(c|d) ∝ P̂(c)
∏

1≤k≤nd

P̂(tk |c)

ApplyLinearClassifier(�w, b, �x)
1 score ← ∑M

i=1 wi xi

2 if score > b
3 then return 1
4 else return 0

Figure 14.9 Linear classification algorithm.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.4 Linear versus nonlinear classifiers 279

Table 14.4 A linear classifier. The dimensions ti and parameters wi of a linear
classifier for the class interest (as in interest rate) in Reuters-21578. The threshold is
b = 0. Terms like dlr and world have negative weights because they are indicators
for the competing class currency.

ti wi d1i d2i ti wi d1i d2i

prime 0.70 0 1 dlrs -0.71 1 1
rate 0.67 1 0 world -0.35 1 0
interest 0.63 0 0 sees -0.33 0 0
rates 0.60 0 0 year -0.25 0 0
discount 0.46 1 0 group -0.24 0 0
bundesbank 0.43 0 0 dlr -0.24 0 0

and nd is the number of tokens in the document that are part of the vocabu-
lary. Denoting the complement category as c̄, we obtain for the log odds:

log
P̂(c|d)
P̂(c̄|d)

= log
P̂(c)
P̂(c̄)

+
∑

1≤k≤nd

log
P̂(tk |c)
P̂(tk |c̄)

.(14.5)

We choose class c if the odds are greater than 1 or, equivalently, if the log
odds are greater than 0. It is easy to see that Equation (14.5) is an instance of
Equation (14.3) for wi = log[P̂(ti |c)/P̂(ti |c̄)], xi = number of occurrences of ti
in d, and b = − log[P̂(c)/P̂(c̄)]. Here, the index i , 1 ≤ i ≤ M, refers to terms
of the vocabulary (not to positions in d as k does, cf. Section 13.4.1, page 250)
and �x and �w are M-dimensional vectors. So in log space, Naive Bayes is a
linear classifier.

✎ Example 14.3: Table 14.4 defines a linear classifier for the category interest
in Reuters-21578 (see Section 13.6, page 258). We assign document �d1 “rate
discount dlrs world” to interest since �wT �d1 = 0.67 · 1 + 0.46 · 1 + (−0.71) ·
1 + (−0.35) · 1 = 0.07 > 0 = b. We assign �d2 “prime dlrs” to the comple-
ment class (not in interest) because �wT �d2 = −0.01 ≤ b. For simplicity, we
assume a simple binary vector representation in this example: 1 for occur-
ring terms, 0 for nonoccurring terms.

Figure 14.10 is a graphical example of a linear problem, which we define to
mean that the underlying distributions P(d|c) and P(d|c) of the two classes
are separated by a line. We call this separating line the class boundary. Itclass

boundary is the “true” boundary of the two classes and we distinguish it from the
decision boundary that the learning method computes to approximate the
class boundary.

As is typical in text classification, there are some noise documents in Fig-noise
document ure 14.10 (marked with arrows) that do not fit well into the overall distri-

bution of the classes. In Section 13.5 (page 251), we defined a noise feature
as a misleading feature that, when included in the document representation,
on average increases the classification error. Analogously, a noise document
is a document that, when included in the training set, misleads the learning

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

280 Vector space classification

200
number of Chinese characters

nu
m

be
r

of
 R

om
an

 a
lp

ha
be

t c
ha

ra
ct

er
s

140

120

100

80

60

40

20

400 600 800 1000

Figure 14.10 A linear problem with noise. In this hypothetical web page classification scenario,
Chinese–only web pages are solid circles and mixed Chinese–English web pages are squares. The
two classes are separated by a linear class boundary (dashed line, short dashes), except for three
noise documents (marked with arrows).

method and increases classification error. Intuitively, the underlying distri-
bution partitions the representation space into areas with mostly homoge-
neous class assignments. A document that does not conform with the domi-
nant class in its area is a noise document.

Noise documents are one reason why training a linear classifier is hard. If
we pay too much attention to noise documents when choosing the decision
hyperplane of the classifier, then it will be inaccurate on new data. More
fundamentally, it is usually difficult to determine which documents are noise
documents and therefore potentially misleading.

If there exists a hyperplane that perfectly separates the two classes, then we
call the two classes linearly separable. In fact, if linear separability holds, thenlinear

separability there is an infinite number of linear separators (Exercise 14.4) as illustrated by
Figure 14.8, where the number of possible separating hyperplanes is infinite.

Figure 14.8 illustrates another challenge in training a linear classifier. If we
are dealing with a linearly separable problem, then we need a criterion for
selecting among all decision hyperplanes that perfectly separate the training
data. In general, some of these hyperplanes will do well on new data, some
will not.

An example of a nonlinear classifier is kNN. The nonlinearity of kNN isnonlinear
classifier intuitively clear when looking at examples like Figure 14.6. The decision

boundary of kNN consists of locally linear segments, but in general has a
complex shape that is not equivalent to a line in 2D or a hyperplane in higher
dimensions.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.5 Classification with more than two classes 281

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14.11 A nonlinear problem.

Figure 14.11 is another example of a nonlinear problem: There is no good
linear separator between the distributions P(d|c) and P(d|c) because of the
circular “enclave” in the upper left part of the graph. Linear classifiers mis-
classify the enclave, whereas a nonlinear classifier like kNN will be highly
accurate for this type of problem if the training set is large enough.

If a problem is nonlinear and its class boundaries cannot be approximated
well with linear hyperplanes, then nonlinear classifiers are often more accu-
rate than linear classifiers. If a problem is linear, it is best to use a simpler
linear classifier.

? Exercise 14.4 Prove that the number of linear separators of two classes is
either infinite or zero.

14.5 Classification with more than two classes

We can extend two-class linear classifiers to J > 2 classes. The method to use
depends on whether the classes are mutually exclusive or not.

Classification for classes that are not mutually exclusive is called any-of ,any-of
classification multilabel, or multivalue classification. In this case, a document can belong to

several classes simultaneously, or to a single class, or to none of the classes.
A decision on one class leaves all options open for the others. It is some-
times said that the classes are independent of each other, but this is mislead-
ing; the classes are rarely statistically independent in the sense defined on
page 255. In terms of the formal definition of the classification problem in

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

282 Vector space classification

Equation (13.1) (page 237), we learn J different classifiers γ j in any-of classi-
fication, each returning either c j or c j : γ j (d) ∈ {c j , c j }.

Solving an any-of classification task with linear classifiers is straightfor-
ward:

1. Build a classifier for each class, where the training set consists of the set
of documents in the class (positive labels) and its complement (negative
labels).

2. Given the test document, apply each classifier separately. The decision of
one classifier has no influence on the decisions of the other classifiers.

The second type of classification with more than two classes is one-of clas-one-of clas-
sification sification. Here, the classes are mutually exclusive. Each document must be-

long to exactly one of the classes. One-of classification is also called multi-
nomial, polytomous,4 multiclass, or single-label classification. Formally, there is a
single classification function γ in one-of classification whose range is C, i.e.,
γ (d) ∈ {c1, . . . , c J }. kNN is a (nonlinear) one-of classifier.

True one-of problems are less common in text classification than any-of
problems. With classes like UK, China, poultry, or coffee, a document can be
relevant to many topics simultaneously – as when the prime minister of the
UK visits China to talk about the coffee and poultry trade.

Nevertheless, we will often make a one-of assumption, as we did in
Figure 14.1, even if classes are not really mutually exclusive. For the clas-
sification problem of identifying the language of a document, the one-of
assumption is a good approximation as most text is written in only one lan-
guage. In such cases, imposing a one-of constraint can increase the classifier’s
effectiveness because errors that are due to the fact that the any-of classifiers
assigned a document to either no class or more than one class are eliminated.

J hyperplanes do not divide R
|V| into J distinct regions as illustrated in

Figure 14.12. Thus, we must use a combination method when using two-
class linear classifiers for one-of classification. The simplest method is to
rank classes and then select the top-ranked class. Geometrically, the rank-
ing can be with respect to the distances from the J linear separators. Docu-
ments close to a class’s separator are more likely to be misclassified, so the
greater the distance from the separator, the more plausible it is that a positive
classification decision is correct. Alternatively, we can use a direct measure
of confidence to rank classes, for example, probability of class membership.
We can state this algorithm for one-of classification with linear classifiers as
follows:

1. Build a classifier for each class, where the training set consists of the set
of documents in the class (positive labels) and its complement (negative
labels).

2. Given the test document, apply each classifier separately.

4 A synonym of polytomous is polychotomous.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.5 Classification with more than two classes 283

?

Figure 14.12 J hyperplanes do not divide space into J disjoint regions.

3. Assign the document to the class with� the maximum score,� the maximum confidence value,� or the maximum probability.

An important tool for analyzing the performance of a classifier for J > 2
classes is the confusion matrix. The confusion matrix shows for each pair ofconfusion

matrix classes 〈c1, c2〉, how many documents from c1 were incorrectly assigned to c2.
In Table 14.5, the classifier manages to distinguish the three financial classes
money-fx, trade, and interest from the three agricultural classes wheat, corn,
and grain, but makes many errors within these two groups. The confusion
matrix can help pinpoint opportunities for improving the accuracy of the
system. For example, to address the second largest error in Table 14.5, one
could attempt to introduce features that distinguish wheat documents from
grain documents.

? Exercise 14.5 Create a training set of 300 documents, 100 each from three
different languages (e.g., English, French, and Spanish). Create a test set by
the same procedure, but also add 100 documents from a fourth language.
Train (i) a one-of classifier and (ii) an any-of classifier on this training set
and evaluate it on the test set. (iii) Are there any interesting differences in
how the two classifiers behave on this task?

Table 14.5 A confusion matrix for Reuters-21578. For example, fourteen documents
from grain were incorrectly assigned to wheat. Adapted from Picca et al. (2006).

assigned class money-fx trade interest wheat corn grain
true class

money-fx 95 0 10 0 0 0
trade 1 1 90 0 1 0
interest 13 0 0 0 0 0
wheat 0 0 1 34 3 7
corn 1 0 2 13 26 5
grain 0 0 2 14 5 10

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

284 Vector space classification

✄ 14.6 The bias–variance tradeoff

Nonlinear classifiers are more powerful than linear classifiers. For some
problems, there exists a nonlinear classifier with zero classification error, but
no such linear classifier. Does that mean that we should always use nonlinear
classifiers for optimal effectiveness in statistical text classification?

To answer this question, we introduce the bias–variance tradeoff in this
section, one of the most important concepts in machine learning. The trade-
off helps to explain why there is no universally optimal learning method.
Selecting an appropriate learning method is therefore an unavoidable part of
solving a text classification problem.

Throughout this section, we use linear and nonlinear classifiers as proto-
typical examples of “less powerful” and “more powerful” learning, respec-
tively. This is a simplification for a number of reasons. First, many nonlinear
models subsume linear models as a special case. For instance, a nonlinear
learning method like kNN will in some cases produce a linear classifier. Sec-
ond, there are nonlinear models that are less complex than linear models. For
instance, a quadratic polynomial with two parameters is less powerful than
a 10,000-dimensional linear classifier. Third, the complexity of learning is not
really a property of the classifier because there are many aspects of learning
(such as feature selection, cf. Section 13.5, page 251 regularization, and con-
straints such as margin maximization in Chapter 15) that make a learning
method either more powerful or less powerful without affecting the type of
classifier that is the final result of learning-regardless of whether that clas-
sifier is linear or nonlinear. We refer the reader to the publications listed in
Section 14.7 for a treatment of the bias–variance tradeoff that takes into ac-
count these complexities. In this section, linear and nonlinear classifiers will
simply serve as proxies for weaker and stronger learning methods in text
classification.

We first need to state our objective in text classification more precisely.
In Section 13.1 (page 237), we said that we want to minimize classifica-
tion error on the test set. The implicit assumption was that training docu-
ments and test documents are generated according to the same underlying
distribution. We will denote this distribution by P(〈d, c〉) where d is the doc-
ument and c its label or class. Figures 13.4 and 13.5 were examples of gen-
erative models that decompose P(〈d, c〉) into the product of P(c) and P(d|c).
Figures 14.10 and 14.11 depict generative models for 〈d, c〉 with d ∈ R

2 and
c ∈ {square, solid circle}.

In this section, instead of using the number of correctly classified test
documents (or, equivalently, the error rate on test documents) as evaluation
measure, we adopt an evaluation measure that addresses the inherent un-
certainty of labeling. In many text classification problems, a given document
representation can arise from documents belonging to different classes.
This is because documents from different classes can be mapped to the

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.6 The bias–variance tradeoff 285

same document representation. For example, the one-sentence documents
China sues France and France sues China are mapped to the same document
representation d ′ = {China, France, sues} in a bag-of-words model. But only
the latter document is relevant to the class c′ = legal actions brought by
France (which might be defined, for example, as a standing query by an
international trade lawyer).

To simplify the calculations in this section, we do not count the number
of errors on the test set when evaluating a classifier, but instead look at how
well the classifier estimates the conditional probability P(c|d) of a document
being in a class. In the above example, we might have P(c′|d ′) = 0.5.

Our goal in text classification then is to find a classifier γ such that, aver-
aged over documents d, γ (d) is as close as possible to the true probability
P(c|d). We measure this using mean squared error:

MSE(γ) = Ed [γ (d) − P(c|d)]2(14.6)

where Ed is the expectation with respect to P(d). The mean squared error
term gives partial credit for decisions by γ that are close if not completely
right.

We define a classifier γ to be optimal for a distribution P(〈d, c〉) if it mini-optimal
classifier mizes MSE(γ).

Minimizing MSE is a desideratum for classifiers. We also need a criterion
for learning methods. Recall that we defined a learning method � as a function
that takes a labeled training set D as input and returns a classifier γ .

For learning methods, we adopt as our goal to find a � that, averaged over
training sets, learns classifiers γ with minimal MSE. We can formalize this as
minimizing learning error:learning

error

learning-error(�) = ED[MSE(�(D))](14.7)

where ED is the expectation over labeled training sets. To keep things simple,
we can assume that training sets have a fixed size – the distribution P(〈d, c〉)
then defines a distribution P(D) over training sets.

We can use learning error as a criterion for selecting a learning method in
statistical text classification. A learning method � is optimal for a distributionoptimal

learning
method

P(D) if it minimizes the learning error.
Writing �D for �(D) for better readability, we can transform Equation (14.7)

as follows:

learning-error(�) = ED[MSE(�D)]

= ED Ed [�D(d) − P(c|d)]2(14.10)

= Ed [bias(�, d) + variance(�, d)](14.11)

bias(�, d) = [P(c|d) − ED�D(d)]2(14.12)

variance(�, d) = ED[�D(d) − ED�D(d)]2(14.13)

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

286 Vector space classification

E[x − α]2 = Ex2 − 2Exα + α2(14.8)

= (Ex)2 − 2Exα + α2

+Ex2 − 2(Ex)2 + (Ex)2

= [Ex − α]2

+Ex2 − E2x(Ex) + E(Ex)2

= [Ex − α]2 + E[x − Ex]2

ED Ed [�D(d) − P(c|d)]2 = Ed ED[�D(d) − P(c|d)]2(14.9)

= Ed [[ED�D(d) − P(c|d)]2

+ED[�D(d) − ED�D(d)]2]

Figure 14.13 Arithmetic transformations for the bias–variance decomposition. For the deriva-
tion of Equation (14.9), we set α = P(c|d) and x = �D(d) in Equation (14.8).

where the equivalence between Equations (14.10) and (14.11) is shown in
Equation (14.9) in Figure 14.13. Note that d and D are independent of each
other. In general, for a random document d and a random training set D, D

does not contain a labeled instance of d.
Bias is the squared difference between P(c|d), the true conditional prob-bias

ability of d being in c, and �D(d), the prediction of the learned classifier,
averaged over training sets. Bias is large if the learning method produces
classifiers that are consistently wrong. Bias is small if (i) the classifiers are
consistently right or (ii) different training sets cause errors on different doc-
uments or (iii) different training sets cause positive and negative errors on
the same documents, but that average out to close to 0. If one of these three
conditions holds, then ED�D(d), the expectation over all training sets, is close
to P(c|d).

Linear methods like Rocchio and Naive Bayes have a high bias for non-
linear problems because they can only model one type of class boundary, a
linear hyperplane. If the generative model P(〈d, c〉) has a complex nonlinear
class boundary, the bias term in Equation (14.11) will be high because a large
number of points will be consistently misclassified. For example, the circular
enclave in Figure 14.11 does not fit a linear model and will be misclassified
consistently by linear classifiers.

We can think of bias as resulting from our domain knowledge (or lack
thereof) that we build into the classifier. If we know that the true boundary
between the two classes is linear, then a learning method that produces linear
classifiers is more likely to succeed than a nonlinear method. But if the true
class boundary is not linear and we incorrectly bias the classifier to be linear,
then classification accuracy will be low on average.

Nonlinear methods like kNN have low bias. We can see in Figure 14.6 that
the decision boundaries of kNN are variable – depending on the distribution

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.6 The bias–variance tradeoff 287

of documents in the training set, learned decision boundaries can vary
greatly. As a result, each document has a chance of being classified correctly
for some training sets. The average prediction ED�D(d) is therefore closer to
P(c|d) and bias is smaller than for a linear learning method.

Variance is the variation of the prediction of learned classifiers: the averagevariance

squared difference between �D(d) and its average ED�D(d). Variance is large
if different training sets D give rise to very different classifiers �D. It is small if
the training set has a minor effect on the classification decisions �D makes, be
they correct or incorrect. Variance measures how inconsistent the decisions
are, not whether they are correct or incorrect.

Linear learning methods have low variance because most randomly drawn
training sets produce similar decision hyperplanes. The decision lines pro-
duced by linear learning methods in Figures 14.10 and 14.11 will deviate
slightly from the main class boundaries, depending on the training set, but
the class assignment for the vast majority of documents (with the exception
of those close to the main boundary) will not be affected. The circular enclave
in Figure 14.11 will be consistently misclassified.

Nonlinear methods like kNN have high variance. It is apparent from Fig-
ure 14.6 that kNN can model very complex boundaries between two classes.
It is therefore sensitive to noise documents of the sort depicted in Fig-
ure 14.10. As a result the variance term in Equation (14.11) is large for kNN:
Test documents are sometimes misclassified – if they happen to be close to
a noise document in the training set – and sometimes correctly classified –
if there are no noise documents in the training set near them. This results in
high variation from training set to training set.

High-variance learning methods are prone to overfitting the training data.overfitting

The goal in classification is to fit the training data to the extent that we cap-
ture true properties of the underlying distribution P(〈d, c〉). In overfitting,
the learning method also learns from noise. Overfitting increases MSE and
frequently is a problem for high-variance learning methods.

We can also think of variance as the model complexity or, equivalently, mem-memory
capacity ory capacity of the learning method – how detailed a characterization of the

training set it can remember and then apply to new data. This capacity corre-
sponds to the number of independent parameters available to fit the training
set. Each kNN neighborhood Sk makes an independent classification deci-
sion. The parameter in this case is the estimate P̂(c|Sk) from Figure 14.7. Thus,
kNN’s capacity is only limited by the size of the training set. It can memo-
rize arbitrarily large training sets. In contrast, the number of parameters of
Rocchio is fixed – J parameters per dimension, one for each centroid – and
independent of the size of the training set. The Rocchio classifier (in form
of the centroids defining it) cannot “remember” fine-grained details of the
distribution of the documents in the training set.

According to Equation (14.7), our goal in selecting a learning method
is to minimize learning error. The fundamental insight captured by

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

288 Vector space classification

Equation (14.11), which we can succinctly state as: learning error = bias +
variance, is that the learning error has two components, bias and variance,
which in general cannot be minimized simultaneously. When comparing two
learning methods �1 and �2, in most cases the comparison comes down to
one method having higher bias and lower variance and the other lower bias
and higher variance. The decision for one learning method versus another
is then not simply a matter of selecting the one that reliably produces good
classifiers across training sets (small variance) or the one that can learn clas-
sification problems with very difficult decision boundaries (small bias). In-
stead, we have to weigh the respective merits of bias and variance in our
application and choose accordingly. This tradeoff is called the bias–variancebias–

variance
tradeoff

tradeoff .
Figure 14.10 provides an illustration, which is somewhat contrived, but

will be useful as an example for the tradeoff. Some Chinese text contains
English words written in the Roman alphabet like CPU, ONLINE, and GPS.
Consider the task of distinguishing Chinese–only web pages from mixed
Chinese–English web pages. A search engine might offer Chinese users with-
out knowledge of English (but who understand loanwords like CPU) the op-
tion of filtering out mixed pages. We use two features for this classification
task: number of Roman alphabet characters and number of Chinese char-
acters on the web page. As stated earlier, the distribution P(〈d, c〉) of the
generative model generates most mixed (respectively, Chinese) documents
above (respectively, below) the short-dashed line, but there are a few noise
documents. In Figure 14.10, we see three classifiers.

� One-feature classifier. Shown as a dotted horizontal line. This classifier
uses only one feature, the number of Roman alphabet characters. Assum-
ing a learning method that minimizes the number of misclassifications in
the training set, the position of the horizontal decision boundary is not
greatly affected by differences in the training set (e.g., noise documents).
So a learning method producing this type of classifier has low variance,
but its bias is high because it will consistently misclassify squares in the
lower left corner and “solid circle” documents with more than fifty Roman
characters.� Linear classifier. Shown as a dashed line with long dashes. Learning lin-
ear classifiers has less bias; only noise documents and possibly a few docu-
ments close to the boundary between the two classes are misclassified. The
variance is higher than for the one-feature classifiers, but still small: The
dashed line with long dashes deviates only slightly from the true bound-
ary between the two classes, and so will almost all linear decision bound-
aries learned from training sets. Thus, very few documents (documents
close to the class boundary) will be inconsistently classified.� “Fit-training-set-perfectly” classifier. Shown as a solid line. Here, the
learning method constructs a decision boundary that perfectly separates

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.6 The bias–variance tradeoff 289

the classes in the training set. This method has the lowest bias because
there is no document that is consistently misclassified – the classifiers
sometimes even get noise documents in the test set right. But the variance
of this learning method is high. Because noise documents can move the
decision boundary arbitrarily, test documents close to noise documents
in the training set will be misclassified – something that a linear learning
method is unlikely to do.

It is perhaps surprising that so many of the best-known text classification
algorithms are linear. Some of these methods, in particular linear SVMs, reg-
ularized logistic regression and regularized linear regression, are among the
most effective known methods. The bias–variance tradeoff provides insight
into their success. Typical classes in text classification are complex and seem
unlikely to be modeled well linearly. However, this intuition is misleading
for the high-dimensional spaces that we typically encounter in text appli-
cations. With increased dimensionality, the likelihood of linear separability
increases rapidly (Exercise 14.17). Thus, linear models in high-dimensional
spaces are quite powerful despite their linearity. Even more powerful nonlin-
ear learning methods can model decision boundaries that are more complex
than a hyperplane, but they are also more sensitive to noise in the training
data. Nonlinear learning methods sometimes perform better if the training
set is large, but by no means in all cases.

? Exercise 14.6 In Figure 14.14, which of the three vectors �a , �b, and �c is (i)
most similar to �x according to dot product similarity, (ii) most similar to
�x according to cosine similarity, (iii) closest to �x according to Euclidean
distance?

Exercise 14.7 Download Reuters-21578 and train and test Rocchio and kNN
classifiers for the classes acquisitions, corn, crude, earn, grain, interest, money-
fx, ship, trade, and wheat. Use the ModApte split. You may want to use one
of a number of software packages that implement Rocchio classification
and kNN classification, for example, the Bow toolkit (McCallum 1996).

Exercise 14.8 Download 20 Newgroups (page 142) and train and test Rocchio
and kNN classifiers for its twenty classes.

Exercise 14.9 Show that the decision boundaries in Rocchio classification are,
as in kNN, given by the Voronoi tessellation.

Exercise 14.10 [] Computing the distance between a dense centroid and a
sparse vector is �(M) for a naive implementation that iterates over all
M dimensions. Based on the equality

∑
(xi − µi)2 = 1.0 + ∑

µ2
i − 2

∑
xiµi

and assuming that
∑

µ2
i has been precomputed, write down an algorithm

that is �(Ma) instead, where Ma is the number of distinct terms in the test
document.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

290 Vector space classification

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

a x

b

c

Figure 14.14 Example for differences between Euclidean distance, dot product similarity and
cosine similarity. The vectors are �a = (0.5 1.5)T , �x = (2 2)T , �b = (4 4)T , and �c = (8 6)T .

Exercise 14.11 [] Prove that the region of the plane consisting of all points
with the same k nearest neighbors is a convex polygon.

Exercise 14.12 Design an algorithm that performs an efficient 1NN search
in one dimension (where efficiency is with respect to the number of docu-
ments N). What is the time complexity of the algorithm?

Exercise 14.13 [] Design an algorithm that performs an efficient 1NN
search in two dimensions with at most polynomial (in N) preprocessing
time.

Exercise 14.14 [] Can one design an exact efficient algorithm for 1NN for
very large M along the ideas you used to solve the last exercise?

Exercise 14.15 Show that Equation (14.4) defines a hyperplane with �w =
�µ(c1) − �µ(c2) and b = 0.5 ∗ (| �µ(c1)|2 − |�µ(c2)|2).

Exercise 14.16 We can easily construct nonseparable data sets in high di-
mensions by embedding a nonseparable set like the one shown in Fig-
ure 14.15. Consider embedding Figure 14.15 in 3D and then perturbing
the four points slightly (i.e., moving them a small distance in a random
direction). Why would you expect the resulting configuration to be lin-
early separable? How likely is then a non-separable set of m � M points
in M-dimensional space?

Exercise 14.17 Assuming two classes, show that the percentage of nonsepa-
rable assignments of the vertices of a hypercube decreases with dimension-
ality M for M > 1. For example, for M = 1 the proportion of nonseparable

Figure 14.15 A simple nonseparable set of points.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

14.7 References and further reading 291

assignments is 0, for M = 2, it is 2/16. One of the two nonseparable cases
for M = 2 is shown in Figure 14.15, the other is its mirror image. Solve the
exercise either analytically or by simulation.

Exercise 14.18 Although we point out the similarities of Naive Bayes with
linear vector space classifiers, it does not make sense to represent count
vectors (the document representations in NB) in a continuous vector space.
There is however a formalization of NB that is analogous to Rocchio. Show
that NB assigns a document to the class (represented as a parameter vec-
tor) whose Kullback-Leibler (KL) divergence (Section 12.4, page 231) to the
document (represented as a count vector as in Section 13.4.1 (page 250),
normalized to sum to 1) is smallest.

14.7 References and further reading

As discussed in Chapter 9, Rocchio relevance feedback is due to Rocchio
(1971). Joachims (1997) presents a probabilistic analysis of the method. Roc-
chio classification was widely used as a classification method in TREC in
the 1990s (Buckley et al. 1994a,b; Voorhees and Harman 2005). Initially, it
was used as a form of routing. Routing merely ranks documents accord-routing

ing to relevance to a class without assigning them. Early work on filtering,filtering

a true classification approach that makes an assignment decision on each
document, was published by Ittner et al. (1995) and Schapire et al. (1998).
The definition of routing we use here should not be confused with an-
other sense. Routing can also refer to the electronic distribution of docu-
ments to subscribers, the so-called push model of document distribution. In apush model

pull model, each transfer of a document to the user is initiated by the user, forpull model

example, by means of search or by selecting it from a list of documents on a
news aggregation website.

Some authors restrict the name Roccchio classification to two-class problems
and use the terms cluster-based (Iwayama and Tokunaga 1995) and centroid-centroid-

based
classification

based classification (Han and Karypis 2000; Tan and Cheng 2007) for Rocchio
classification with J > 2.

A more detailed treatment of kNN can be found in (Hastie et al. 2001), in-
cluding methods for tuning the parameter k. An example of an approximate
fast kNN algorithm is locality-based hashing (Andoni et al. 2006). Kleinberg
(1997) presents an approximate �((M log2 M)(M + log N)) kNN algorithm
(where M is the dimensionality of the space and N the number of data
points), but at the cost of exponential storage requirements: �((N log M)2M).
Indyk (2004) surveys nearest neighbor methods in high-dimensional spaces.
Early work on kNN in text classification was motivated by the availability
of massively parallel hardware architectures (Creecy et al. 1992). Yang (1994)
uses an inverted index to speed up kNN classification. The optimality result

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

292 Vector space classification

for 1NN (twice the Bayes error rate asymptotically) is due to Cover and Hart
(1967).

The effectiveness of Rocchio classification and kNN is highly dependent
on careful parameter tuning (in particular, the parameters b′ for Rocchio on
page 272 and k for kNN), feature engineering (Section 15.3, page 307) and
feature selection (Section 13.5, page 251). Buckley and Salton (1995), Schapire
et al. (1998), Yang and Kisiel (2003), and Moschitti (2003) address these issues
for Rocchio and Yang (2001) and Ault and Yang (2002) for kNN. Zavrel et al.
(2000) compare feature selection methods for kNN.

The bias–variance tradeoff was introduced by Geman et al. (1992). The
derivation in Section 14.6 is for MSE(γ), but the tradeoff applies to many loss
functions (cf. Friedman (1997), Domingos (2000)). Schütze et al. (1995) and
Lewis et al. (1996) discuss linear classifiers for text and Hastie et al. (2001)
linear classifiers in general. Readers interested in the algorithms mentioned,
but not described in this chapter, may wish to consult Bishop (2006) for neu-
ral networks, Hastie et al. (2001) for linear and logistic regression, and Min-
sky and Papert (1988) for the perceptron algorithm. Anagnostopoulos et al.
(2006) show that an inverted index can be used for highly efficient document
classification with any linear classifier, provided that the classifier is still ef-
fective when trained on a modest number of features via feature selection.

We have only presented the simplest method for combining two-class clas-
sifiers into a one-of classifier. Another important method is the use of error-
correcting codes, where a vector of decisions of different two-class classifiers
is constructed for each document. A test document’s decision vector is then
“corrected” based on the distribution of decision vectors in the training set,
a procedure that incorporates information from all two-class classifiers and
their correlations into the final classification decision (Dietterich and Bakiri
1995). Ghamrawi and McCallum (2005) also exploit dependencies between
classes in any-of classification. Allwein et al. (2000) propose a general frame-
work for combining two-class classifiers.

