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15Support vector machines and
machine learning on documents

Improving classifier effectiveness has been an area of intensive machine-
learning research over the last two decades, and this work has led to a new
generation of state-of-the-art classifiers, such as support vector machines,
boosted decision trees, regularized logistic regression, neural networks, and
random forests. Many of these methods, including support vector machines
(SVMs), the main topic of this chapter, have been applied with success to
information retrieval problems, particularly text classification. An SVM is a
kind of large-margin classifier: It is a vector-space–based machine-learning
method where the goal is to find a decision boundary between two classes
that is maximally far from any point in the training data (possibly discount-
ing some points as outliers or noise).

We will initially motivate and develop SVMs for the case of two-class data
sets that are separable by a linear classifier (Section 15.1), and then extend the
model in Section 15.2 to nonseparable data, multiclass problems, and non-
linear models, and also present some additional discussion of SVM perfor-
mance. The chapter then moves to consider the practical deployment of text
classifiers in Section 15.3: What sorts of classifiers are appropriate when, and
how can you exploit domain-specific text features in classification? Finally,
we will consider how the machine-learning technology that we have been
building for text classification can be applied back to the problem of learn-
ing how to rank documents in ad hoc retrieval (Section 15.4). Although sev-
eral machine learning methods have been applied to this task, use of SVMs
has been prominent. SVMs are not necessarily better than other machine-
learning methods (except perhaps in situations with few training data), but
they perform at the state-of-the-art level and have much current theoretical
and empirical appeal.
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Figure 15.1 The support vectors are the five points right up against the margin of the classifier.

15.1 Support vector machines: The linearly separable case

For two-class, separable training data sets, such as the one in Figure 14.8
(page 278), there are lots of possible linear separators. Intuitively, a decision
boundary drawn in the middle of the void between data items of the two
classes seems better than one which approaches very close to examples of
one or both classes. Although some learning methods such as the perceptron
algorithm (see references in Section 14.7, page 291) find just any linear sepa-
rator, others, like Naive Bayes, search for the best linear separator according
to some criterion. The SVM in particular defines the criterion to be looking
for a decision surface that is maximally far away from any data point. This
distance from the decision surface to the closest data point determines the
margin of the classifier. This method of construction necessarily means thatmargin

the decision function for an SVM is fully specified by a (usually small) sub-
set of the data that defines the position of the separator. These points are
referred to as the support vectors (in a vector space, a point can be thought ofsupport

vector as a vector between the origin and that point). Figure 15.1 shows the margin
and support vectors for a sample problem. Other data points play no part in
determining the decision surface that is chosen.

Maximizing the margin seems good because points near the decision sur-
face represent very uncertain classification decisions; there is almost a 50%
chance of the classifier deciding either way. A classifier with a large margin
makes no low-certainty classification decisions. This gives you a classifica-
tion safety margin: A slight error in measurement or a slight document vari-
ation will not cause a misclassification. Another intuition motivating SVMs
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Figure 15.2 An intuition for large-margin classification. Insisting on a large margin reduces the
capacity of the model: The range of angles at which the fat decision surface can be placed is
smaller than for a decision hyperplane (cf. Figure 14.8, page 278).

is shown in Figure 15.2. By construction, an SVM classifier insists on a large
margin around the decision boundary. Compared with a decision hyper-
plane, if you have to place a fat separator between classes, you have fewer
choices of where it can be put. As a result of this, the memory capacity of the
model has been decreased, and hence we expect that its ability to correctly
generalize to test data is increased (cf. the discussion of the bias-variance
tradeoff in Chapter 14, page 288).

Let us formalize an SVM with algebra. A decision hyperplane (page 278)
can be defined by an intercept term b and a decision hyperplane normal vec-
tor �w, which is perpendicular to the hyperplane. This vector is commonly
referred to in the machine learning literature as the weight vector. To chooseweight

vector among all the hyperplanes that are perpendicular to the normal vector, we
specify the intercept term b. Because the hyperplane is perpendicular to the
normal vector, all points �x on the hyperplane satisfy �wT �x = −b. Now sup-
pose that we have a set of training data points D = {(�xi , yi )}, where each
member is a pair of a point �xi and a class label yi corresponding to it.1 For
SVMs, the two data classes are always named +1 and −1 (rather than 1 and
0), and the intercept term is always explicitly represented as b (rather than
being folded into the weight vector �w by adding an extra always-on fea-
ture). The math works out much more cleanly if you do things this way, as

1 As discussed in Section 14.1 (page 267), we present the general case of points in a vector
space, but if the points are length-normalized document vectors, then all the action is taking
place on the surface of a unit sphere, and the decision surface intersects the sphere’s surface.
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Figure 15.3 The geometric margin of a point (r ) and a decision boundary (ρ).

we will see almost immediately in the definition of functional margin. The
linear classifier is then:

f (�x) = sign( �wT �x + b).(15.1)

A value of −1 indicates one class, and a value of +1 the other class.
We are confident in the classification of a point if it is far away from the

decision boundary. For a given data set and decision hyperplane, we define
the functional margin of the i th example �xi with respect to a hyperplane 〈 �w, b〉functional

margin as the quantity yi ( �wT �xi + b). The functional margin of a data set with respect
to a decision surface is then twice the functional margin of any of the points
in the data set with minimal functional margin (the factor of 2 comes from
measuring across the whole width of the margin, as in Figure 15.3). However,
there is a problem with using this definition as is: The value is undercon-
strained, because we can always make the functional margin as big as we
wish by simply scaling up �w and b. For example, if we replace �w by 5 �w and
b by 5b, then the functional margin yi (5 �wT �xi + 5b) is five times as large. This
suggests that we need to place some constraint on the size of the �w vector. To
get a sense of how to do that, let us look at the actual geometry.

What is the Euclidean distance from a point �x to the decision boundary? In
Figure 15.3, we denote by r this distance. We know that the shortest distance
between a point and a hyperplane is perpendicular to the plane, and hence,
parallel to �w. A unit vector in this direction is �w/| �w|. The dotted line in the
diagram is then a translation of the vector r �w/| �w|. Let us label the point on
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the hyperplane closest to �x as �x′. Then:

�x′ = �x − yr
�w

| �w| ,(15.2)

where multiplying by y just changes the sign for the two cases of �x being on
either side of the decision surface. Moreover, �x′ lies on the decision boundary
and so satisfies �wT �x′ + b = 0. Hence:

�wT
(

�x − yr
�w

| �w|
)

+ b = 0.(15.3)

Solving for r gives2:

r = y
�wT �x + b

| �w| .(15.4)

Again, the points closest to the separating hyperplane are support vectors.
The geometric margin of the classifier is the maximum width of the band thatgeometric

margin can be drawn separating the support vectors of the two classes. That is, it is
twice the minimum value over data points for r given in Equation (15.4), or,
equivalently, the maximal width of one of the fat separators shown in Fig-
ure 15.2. The geometric margin is clearly invariant to scaling of parameters:
if we replace �w by 5 �w and b by 5b, then the geometric margin is the same, be-
cause it is inherently normalized by the length of �w. This means that we can
impose any scaling constraint we wish on �w without affecting the geometric
margin. Among other choices, we could use unit vectors, as in Chapter 6, by
requiring that | �w| = 1. This would have the effect of making the geometric
margin the same as the functional margin.

Because we can scale the functional margin as we please, for convenience
in solving large SVMs, let us choose to require that the functional margin of
all data points is at least 1 and that it is equal to 1 for at least one data vector.
That is, for all items in the data:

yi ( �wT �xi + b) ≥ 1(15.5)

and there exist support vectors for which the inequality is an equality. Be-
cause each example’s distance from the hyperplane is ri = yi ( �wT �xi + b)/| �w|,
the geometric margin is ρ = 2/| �w|. Our desire is still to maximize this geo-
metric margin. That is, we want to find �w and b such that:

� ρ = 2/| �w| is maximized� For all (�xi , yi ) ∈ D, yi ( �wT �xi + b) ≥ 1

Maximizing 2/| �w| is the same as minimizing | �w|/2. This gives the final stan-
dard formulation of an SVM as a minimization problem:

2 Recall that | �w| =
√

�wT �w.
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(15.6) Find �w and b such that:

� 1
2 �wT �w is minimized, and� for all {(�xi , yi )}, yi ( �wT �xi + b) ≥ 1

We are now optimizing a quadratic function subject to linear constraints.
Quadratic optimization problems are a standard, well-known class of mathe-quadratic

programming matical optimization problems, and many algorithms exist for solving them.
We could in principle build our SVM using standard quadratic programming
(QP) libraries, but there has been much recent research in this area aiming to
exploit the structure of the kind of QP that emerges from an SVM. As a result,
there are more intricate but much faster and more scalable libraries available
especially for building SVMs, which almost everyone uses to build models.
We will not present the details of such algorithms here.

However, it will be helpful to what follows to understand the shape of the
solution of such an optimization problem. The solution involves construct-
ing a dual problem where a Lagrange multiplier αi is associated with each
constraint yi ( �wT �xi + b) ≥ 1 in the primal problem:

(15.7) Find α1, . . . αN such that
∑

αi − 1
2

∑
i
∑

j αiα j yi yj �xi
T �xj is maximized, and

� ∑
i αi yi = 0� αi ≥ 0 for all 1 ≤ i ≤ N

The solution is then of the form:

(15.8) �w = ∑
αi yi �xi

b = yk − �wT �xk for any �xk such that αk �= 0

In the solution, most of the αi are zero. Each nonzero αi indicates that the
corresponding �xi is a support vector. The classification function is then:

f (�x) = sign
(∑

i
αi yi �xi

T �x + b
)

.(15.9)

Both the term to be maximized in the dual problem and the classifying func-
tion involve a dot product between pairs of points (�x and �xi or �xi and �xj ), and
that is the only way the data are used – we will return to the significance of
this later.

To recap, we start with a training data set. The data set uniquely defines
the best separating hyperplane, and we feed the data through a quadratic
optimization procedure to find this plane. Given a new point �x to classify,
the classification function f (�x) in either Equation (15.1) or Equation (15.9) is
computing the projection of the point onto the hyperplane normal. The sign
of this function determines the class to assign to the point. If the point is
within the margin of the classifier (or another confidence threshold t that we
might have determined to minimize classification mistakes) then the classi-
fier can return “don’t know” rather than one of the two classes. The value
of f (�x) may also be transformed into a probability of classification; fitting a
sigmoid to transform the values is standard (Platt 2000). Also, because the



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

15.1 Support vector machines: The linearly separable case 299

0 1 2 3
0

1

2

3

Figure 15.4 A tiny-three-data point training set for an SVM.

margin is constant, if the model includes dimensions from various sources,
careful rescaling of some dimensions may be required. However, this is not
a problem if our documents (points) are on the unit hypersphere.

✎ Example 15.1: Consider building an SVM over the (very little) data set
shown in Figure 15.4. Working geometrically, for an example like this, the
maximum margin weight vector will be parallel to the shortest line con-
necting points of the two classes, that is, the line between (1, 1) and (2, 3),
giving a weight vector of (1, 2). The optimal decision surface is orthogo-
nal to that line and intersects it at the halfway point. Therefore, it passes
through (1.5, 2). So, the SVM decision boundary is:

y = x1 + 2x2 − 5.5.

Working algebraically, with the standard constraint that sign(yi ( �wT �xi +
b)) ≥ 1, we seek to minimize | �w|. This happens when this constraint is sat-
isfied with equality by the two support vectors. Further we know that the
solution is �w = (a, 2a ) for some a . So we have that:

a + 2a + b = −1

2a + 6a + b = 1.

Therefore, a = 2/5 and b = −11/5. So the optimal hyperplane is given by
�w = (2/5, 4/5) and b = −11/5.

The margin ρ is 2/| �w| = 2/(4/25 + 15/25) = 2/(2
√

5/5) = √
5. This an-

swer can be confirmed geometrically by examining Figure 15.4.

? Exercise 15.1 [	] What is the minimum number of support vectors that there
can be for a data set (which contains instances of each class)?

Exercise 15.2 [		] The basis of being able to use kernels in SVMs (see Sec-
tion 15.2.3) is that the classification function can be written in the form of
Equation (15.9) (where, for large problems, most αi are 0). Show explicitly
how the classification function could be written in this form for the data
set from Example 15.1. That is, write f as a function where the data points
appear and the only variable is �x.
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Figure 15.5 Large margin classification with slack variables.

Exercise 15.3 [		] Install an SVM package such as SVMlight (http://svmlight.

joachims.org/), and build an SVM for the data set discussed in Example 15.1.
Confirm that the program gives the same solution as the text. For SVM-
light, or another package that accepts the same training data format, the
training file would be:

+1 1:2 2:3

−1 1:2 2:0

−1 1:1 2:1

The training command for SVMlight is then:

svm learn -c 1 -a alphas.dat train.dat model.dat

The -c 1 option is needed to turn off use of the slack variables that we
discuss in Section 15.2.1. Check that the norm of the weight vector agrees
with what we found in Example 15.1. Examine the file alphas.dat which
contains the αi values, and check that they agree with your answers in
Exercise 15.2.

15.2 Extensions to the support vector machine model

15.2.1 Soft margin classification

For the very high dimensional problems common in text classification, some-
times the data are linearly separable. But in the general case they are not, and
even if they are, we might prefer a solution that better separates the bulk of
the data while ignoring a few weird noise documents.

If the training set D is not linearly separable, the standard approach is to
allow the fat decision margin to make a few mistakes (some points – outliers
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or noisy examples – are inside or on the wrong side of the margin). We then
pay a cost for each misclassified example, which depends on how far it is
from meeting the margin requirement given in Equation (15.5). To implement
this, we introduce slack variables ξi . A nonzero value for ξi allows �xi to notslack

variables meet the margin requirement at a cost proportional to the value of ξi . See
Figure 15.5.

The formulation of the SVM optimization problem with slack variables is:

(15.10) Find �w, b, and ξi ≥ 0 such that:

� 1
2 �wT �w + C

∑
i ξi is minimized� and for all {(�xi , yi )}, yi ( �wT �xi + b) ≥ 1 − ξi

The optimization problem is then trading off how fat it can make the margin
versus how many points have to be moved around to allow this margin.
The margin can be less than 1 for a point �xi by setting ξi > 0, but then one
pays a penalty of Cξi in the minimization for having done that. The sum of
the ξi gives an upper bound on the number of training errors. Soft-margin
SVMs minimize training error traded off against margin. The parameter C
is a regularization term, which provides a way to control overfitting: As Cregularization

becomes large, it is unattractive to not respect the data at the cost of reducing
the geometric margin; when it is small, it is easy to account for some data
points with the use of slack variables and to have a fat margin placed so it
models the bulk of the data.

The dual problem for soft margin classification becomes:

(15.11) Find α1, . . . αN such that
∑

αi − 1
2

∑
i
∑

j αiα j yi yj �xi
T �xj is maximized, and

� ∑
i αi yi = 0� 0 ≤ αi ≤ C for all 1 ≤ i ≤ N

Neither the slack variables ξi nor Lagrange multipliers for them appear in the
dual problem. All we are left with is the constant C bounding the possible
size of the Lagrange multipliers for the support vector data points. As before,
the �xi with nonzero αi will be the support vectors. The solution of the dual
problem is of the form:

(15.12) �w = ∑
αyi �xi

b = yk(1 − ξk) − �wT �xk for k = arg maxk αk

Again, �w is not needed explicitly for classification, which can be done in
terms of dot products with data points, as in Equation (15.9).

Typically, the support vectors will be a small proportion of the training
data. However, if the problem is nonseparable or with small margin, then ev-
ery data point that is misclassified or within the margin will have a nonzero
αi . If this set of points becomes large, then, for the nonlinear case which we
turn to in Section 15.2.3, this can be a major slowdown for using SVMs at test
time.
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Table 15.1 Training and testing complexity of various classifiers including SVMs. Train-
ing is the time the learning method takes to learn a classifier over D, whereas testing is
the time it takes a classifier to classify one document. For SVMs, multiclass classification
is assumed to be done by a set of |C| one-versus-rest classifiers. Lave is the average num-
ber of tokens per document, and Mave is the average vocabulary (number of nonzero
features) of a document. La and Ma are the numbers of tokens and types, respectively, in
the test document.

classifier mode method time complexity

NB training �(|D|Lave + |C||V|)
NB testing �(|C|Ma)

Rocchio training �(|D|Lave + |C||V|)
Rocchio testing �(|C|Ma)

kNN training preprocessing �(|D|Lave)
kNN testing preprocessing �(|D|Mave Ma)

kNN training no preprocessing �(1)
kNN testing no preprocessing �(|D|Lave Ma)

SVM training conventional O(|C||D|3 Mave);
≈ O(|C||D|1.7 Mave), empirically

SVM training cutting planes O(|C||D|Mave)
SVM testing O(|C|Ma)

The complexity of training and testing with linear SVMs is shown in Ta-
ble 15.1.3 The time for training an SVM is dominated by the time for solving
the underlying QP, and so the theoretical and empirical complexity varies de-
pending on the method used to solve it. The standard result for solving QPs
is that it takes time cubic in the size of the data set (Kozlov et al. 1979). All the
recent work on SVM training has worked to reduce that complexity, often by
being satisfied with approximate solutions. Standardly, empirical complex-
ity is about O(|D|1.7) (Joachims 2006a). Nevertheless, the superlinear training
time of traditional SVM algorithms makes them difficult or impossible to
use on very large training data sets. Alternative traditional SVM solution al-
gorithms which are linear in the number of training examples scale badly
with a large number of features, which is another standard attribute of text
problems. However, a new training algorithm based on cutting plane tech-
niques gives a promising answer to this issue by having running time linear
in the number of training examples and the number of nonzero features in ex-
amples (Joachims 2006a). Nevertheless, the actual speed of doing quadratic
optimization remains much slower than simply counting terms as is done
in a Naive Bayes model. Extending SVM algorithms to nonlinear SVMs, as
in the next section, standardly increases training complexity by a factor of
|D| (because dot products between examples need to be calculated), making

3 We write �(|D|Lave) for �(T) (page 242) and assume that the length of test documents is
bounded as we did on page 242.
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them impractical. In practice it can often be cheaper to materialize the higher
order features and to train a linear SVM.4

15.2.2 Multiclass support vector machines

SVMs are inherently two-class classifiers. The traditional way to do multi-
class classification with SVMs is to use one of the methods discussed in Sec-
tion 14.5 (page 281). In particular, the most common technique in practice has
been to build |C| one-versus-rest classifiers (commonly referred to as “one-
versus-all” or OVA classification), and to choose the class that classifies the
test datum with greatest margin. Another strategy is to build a set of one-
versus-one classifiers, and to choose the class that is selected by the most
classifiers. Although this involves building |C|(|C| − 1)/2 classifiers, the time
for training classifiers may actually decrease, because the training data set
for each classifier is much smaller.

However, these are not very elegant approaches to solving multiclass prob-
lems. A better alternative is provided by the construction of multiclass SVMs,
where we build a two-class classifier over a feature vector �(�x, y) derived
from the pair consisting of the input features and the class of the datum. At
test time, the classifier chooses the class y = arg maxy′ �wT�(�x, y′). The margin
during training is the gap between this value for the correct class and for the
nearest other class, and so the quadratic program formulation will require
that ∀i ∀y �= yi �wT�( �xi , yi ) − �wT�( �xi , y) ≥ 1 − ξi . This general method can be
extended to give a multiclass formulation of various kinds of linear classi-
fiers. It is also a simple instance of a generalization of classification where
the classes are not just a set of independent, categorical labels, but may be
arbitrary structured objects with relationships defined between them. In the
SVM world, such work comes under the label of structural SVMs. We men-structural

SVMs tion them again in Section 15.4.2.

15.2.3 Nonlinear support vector machines

With what we have presented so far, data sets that are linearly separable (per-
haps with a few exceptions or some noise) are well-handled. But what are we
going to do if the data set just doesn’t allow classification by a linear classi-
fier? Let us look at a one-dimensional case. The top data set in Figure 15.6
is straightforwardly classified by a linear classifier but the middle data set is
not. We instead need to be able to pick out an interval. One way to solve this
problem is to map the data onto a higher dimensional space and then to use
a linear classifier in the higher dimensional space. For example, the bottom

4 Materializing the features refers to directly calculating higher order and interaction terms
and then putting them into a linear model.
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Figure 15.6 Projecting data that is not linearly separable into a higher dimensional space can
make it linearly separable.

part of the figure shows that a linear separator can easily classify the data
if we use a quadratic function to map the data into two dimensions (a po-
lar coordinates projection would be another possibility). The general idea is
to map the original feature space to some higher dimensional feature space
where the training set is separable. Of course, we would want to do so in
ways that preserve relevant dimensions of relatedness between data points,
so that the resultant classifier should still generalize well.

SVMs, and also a number of other linear classifiers, provide an easy and
efficient way of doing this mapping to a higher dimensional space, which is
referred to as the kernel trick. It’s not really a trick; it just exploits the math thatkernel trick

we have seen. The SVM linear classifier relies on a dot product between data
point vectors. Let K (�xi , �xj ) = �xi

T �xj . Then the classifier we have seen so far is:

f (�x) = sign

(∑
i

αi yi K (�xi , �x) + b

)
.(15.13)

Now suppose we decide to map every data point into a higher dimensional
space via some transformation �:�x !→ φ(�x). Then the dot product becomes
φ(�xi )Tφ(�xj ). If it turned out that this dot product (which is just a real number)
could be computed simply and efficiently in terms of the original data
points, then we wouldn’t have to actually map from �x !→ φ(�x). Rather, we
could simply compute the quantity K (�xi , �xj ) = φ(�xi )Tφ(�xj ), and then use the
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function’s value in Equation (15.13). A kernel function K is such a functionkernel
function that corresponds to a dot product in some expanded feature space.

✎ Example 15.2: The quadratic kernel in two dimensions. For two-
dimensional vectors �u = (u1 u2), �v = (v1 v2), consider K (�u, �v) = (1 +
�uT�v)2. We wish to show that this is a kernel, namely, that K (�u, �v) =
φ(�u)Tφ(�v) for some φ. Consider φ(�u) = (1 u2

1

√
2u1u2 u2

2

√
2u1

√
2u2).

Then:

K (�u, �v) = (1 + �uT�v)2(15.14)

= 1 + u2
1v

2
1 + 2u1v1u2v2 + u2

2v
2
2 + 2u1v1 + 2u2v2

= (1 u2
1

√
2u1u2 u2

2

√
2u1

√
2u2)T(1 v2

1

√
2v1v2 v2

2

√
2v1

√
2v2)

= φ(�u)Tφ(�v).

In the language of functional analysis, what kinds of functions are valid
kernel functions? Kernel functions are sometimes more precisely referred tokernel

as Mercer kernels, because they must satisfy Mercer’s condition: For any g(�x)Mercer
kernel such that

∫
g(�x)2d �x is finite, we must have that:∫

K (�x, �z)g(�x)g(�z)d �xd�z ≥ 0 .(15.15)

A kernel function K must be continuous, symmetric, and have a positive def-
inite gram matrix. Such a K means that there exists a mapping to a reproduc-
ing kernel Hilbert space (a Hilbert space is a vector space closed under dot
products) such that the dot product there gives the same value as the function
K . If a kernel does not satisfy Mercer’s condition, then the corresponding QP
may have no solution. If you would like to better understand these issues,
you should consult the books on SVMs mentioned in Section 15.5. Other-
wise, you can content yourself with knowing that 90% of work with kernels
uses one of two straightforward families of functions of two vectors, which
we define below, and which define valid kernels.

The two commonly used families of kernels are polynomial kernels and ra-
dial basis functions. Polynomial kernels are of the form K (�x, �z) = (1 + �xT�z)d .
The case of d = 1 is a linear kernel, which is what we had before the start of
this section (the constant 1 just changing the threshold). The case of d = 2
gives a quadratic kernel, and is very commonly used. We illustrated the
quadratic kernel in Example 15.2.

The most common form of radial basis function is a Gaussian distribution,
calculated as:

K (�x, �z) = e−(�x−�z)2/(2σ 2).(15.16)

A radial basis function (rbf) is equivalent to mapping the data into an infi-
nite dimensional Hilbert space, and so we cannot illustrate the radial basis
function concretely, as we did a quadratic kernel. Beyond these two families,
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there has been interesting work developing other kernels, some of which is
promising for text applications. In particular, there has been investigation of
string kernels (see Section 15.5).

The world of SVMs comes with its own language, which is rather differ-
ent from the language otherwise used in machine learning. The terminology
does have deep roots in mathematics, but it is important not to be too awed
by that terminology. Really, we are talking about some quite simple things. A
polynomial kernel allows us to model feature conjunctions (up to the order
of the polynomial). That is, if we want to be able to model occurrences of
pairs of words, which give distinctive information about topic classification,
not given by the individual words alone, like perhaps operating and system or
ethnic and cleansing, then we need to use a quadratic kernel. If occurrences of
triples of words give distinctive information, then we need to use a cubic ker-
nel. Simultaneously you also get the powers of the basic features – for most
text applications, that probably is not useful, but just comes along with the
math and hopefully does not do harm. A radial basis function allows you
to have features that pick out circles (hyperspheres), although the decision
boundaries become much more complex as multiple such features interact. A
string kernel lets you have features that are character subsequences of terms.
All of these are straightforward notions which have also been used in many
other places under different names.

15.2.4 Experimental results

We presented results in Section 13.6 showing that an SVM is a very effec-
tive text classifier. The results of Dumais et al. (1998) given in Table 13.9
show SVMs clearly performing the best. This was one of several pieces of
work from this time that established the strong reputation of SVMs for text
classification. Another pioneering work on scaling and evaluating SVMs for
text classification was (Joachims 1998). We present some of his results from
(Joachims 2002a) in Table 15.2.5 Joachims used a large number of term fea-
tures, in contrast with Dumais et al. (1998), who used MI feature selection
(Section 13.5.1, page 252) to build classifiers with a much more limited num-
ber of features. The success of the linear SVM mirrors the results discussed
in Section 14.6 (page 284) on other linear approaches like Naive Bayes. It
seems that working with simple term features can get one a long way. It

5 These results are in terms of the break-even F1 (see Section 8.4). Many researchers dispre-
fer this measure for text classification evaluation; its calculation may involve interpolation
rather than an actual parameter setting of the system and it is not clear why this value
should be reported rather than maximal F1 or another point on the precision/recall curve
motivated by the task at hand. Whereas earlier results in (Joachims 1998) suggested notable
gains on this task from the use of higher order polynomial or rbf kernels, this was with hard-
margin SVMs. With soft-margin SVMs, a simple linear SVM with the default C = 1 performs
best.
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Table 15.2 SVM classifier break-even F1 from (Joachims 2002a, p. 114). Results are shown for the
ten largest categories and for microaveraged performance over all ninety categories on the Reuters-
21578 data set.

linear SVM
rbf-SVM

NB Rocchio dec. Trees kNN C = 0.5 C = 1.0 σ ≈ 7

earn 96.0 96.1 96.1 97.8 98.0 98.2 98.1
acq 90.7 92.1 85.3 91.8 95.5 95.6 94.7
money-fx 59.6 67.6 69.4 75.4 78.8 78.5 74.3
grain 69.8 79.5 89.1 82.6 91.9 93.1 93.4
crude 81.2 81.5 75.5 85.8 89.4 89.4 88.7
trade 52.2 77.4 59.2 77.9 79.2 79.2 76.6
interest 57.6 72.5 49.1 76.7 75.6 74.8 69.1
ship 80.9 83.1 80.9 79.8 87.4 86.5 85.8
wheat 63.4 79.4 85.5 72.9 86.6 86.8 82.4
corn 45.2 62.2 87.7 71.4 87.5 87.8 84.6

microavg. 72.3 79.9 79.4 82.6 86.7 87.5 86.4

is again noticeable the extent to which different papers’ results for the same
machine learning methods differ. In particular, based on replications by other
researchers, the Naive Bayes results of (Joachims 1998) appear too weak, and
the results in Table 13.9 should be taken as representative.

15.3 Issues in the classification of text documents

There are lots of applications of text classification in the commercial world;
email spam filtering is perhaps now the most ubiquitous. Jackson and Mou-
linier (2002) write: “There is no question concerning the commercial value of
being able to classify documents automatically by content. There are myriad
potential applications of such a capability for corporate Intranets, govern-
ment departments, and Internet publishers.”

Most of our discussion of classification has focused on introducing various
machine-learning methods rather than discussing particular features of text
documents relevant to classification. This bias is appropriate for a textbook,
but is misplaced for an application developer. It is frequently the case that
greater performance gains can be achieved from exploiting domain-specific
text features than from changing from one machine learning method to an-
other. Jackson and Moulinier (2002) suggest that “Understanding the data
is one of the keys to successful categorization, yet this is an area in which
most categorization tool vendors are extremely weak. Many of the ‘one size
fits all’ tools on the market have not been tested on a wide range of content
types.” In this section, we wish to step back a little and consider the applica-
tions of text classification, the space of possible solutions, and the utility of
application-specific heuristics.
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15.3.1 Choosing what kind of classifier to use

When confronted with a need to build a text classifier, the first question to
ask is how much training data is there currently available? None? Very little?
Quite a lot? Or a huge amount, growing every day? Often one of the biggest
practical challenges in fielding a machine-learning classifier in real applica-
tions is creating or obtaining enough training data. For many problems and
algorithms, hundreds or thousands of examples from each class are required
to produce a high-performance classifier and many real-world contexts in-
volve large sets of categories. We will initially assume that the classifier is
needed as soon as possible; if a lot of time is available for implementation,
much of it might be spent on assembling data resources.

If you have no labeled training data, and especially if there are existing
staff knowledgeable about the domain of the data, then you should never
forget the solution of using hand-written rules. That is, you write standing
queries, as we touched on at the beginning of Chapter 13. For example:

IF (wheat OR grain) AND NOT (whole OR bread) THEN c = grain

In practice, rules get a lot bigger than this, and can be phrased using more so-
phisticated query languages than just Boolean expressions, including the use
of numeric scores. With careful crafting (i.e., by humans tuning the rules on
development data), the accuracy of such rules can become very high. Jacobs
and Rau (1990) report identifying articles about takeovers with 92% preci-
sion and 88.5% recall, and Hayes and Weinstein (1990) report 94% recall and
84% precision over 675 categories on Reuters newswire documents. Never-
theless, the amount of work to create such well-tuned rules is very large. A
reasonable estimate is two days per class, and extra time has to go into main-
tenance of rules, as the content of documents in classes drifts over time (cf.
page 249).

If you have fairly little data and you are going to train a supervised clas-
sifier, then machine-learning theory says you should stick to a classifier with
high bias, as we discussed in Section 14.6 (page 284). For example, there are
theoretical and empirical results that Naive Bayes does well in such circum-
stances (Ng and Jordan 2001; Forman and Cohen 2004), although this effect
is not necessarily observed in practice with regularized models over textual
data (Klein and Manning 2002). At any rate, a very low bias model like a
nearest neighbor model is probably contraindicated. Regardless, the quality
of the model will be adversely affected by the limited training data.

Here, the theoretically interesting answer is to try to apply semisuper-semisupervised
learning vised training methods. This includes methods such as bootstrapping or the

expectation-maximization (EM) algorithm, which we will introduce in Sec-
tion 16.5 (page 338). In these methods, the system gets some labeled docu-
ments, and a further large supply of unlabeled documents over which it can
attempt to learn. One of the big advantages of Naive Bayes is that it can be
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straightforwardly extended to be a semisupervised learning algorithm, but
for SVMs, there is also semi supervised learning work which goes under the
title of transductive SVMs. See the references for pointers.transductive

SVMs Often, the practical answer is to work out how to get more labeled data as
quickly as you can. The best way to do this is to insert yourself into a process
where humans will be willing to label data for you as part of their natural
tasks. For example, in many cases humans will sort or route email for their
own purposes, and these actions give information about classes. The alterna-
tive of getting human labelers expressly for the task of training classifiers is
often difficult to organize, and the labeling is often of lower quality, because
the labels are not embedded in a realistic task context. Rather than getting
people to label all or a random sample of documents, there has also been
considerable research on active learning, where a system that decides whichactive

learning documents a human should label is built. Usually these are the ones on which
a classifier is uncertain of the correct classification. This can be effective in re-
ducing annotation costs by a factor of 2 to 4, but has the problem that the
good documents to label to train one type of classifier often are not the good
documents to label to train a different type of classifier.

If there is a reasonable amount of labeled data, then you are in the perfect
position to use everything that we have presented about text classification.
For instance, you may wish to use an SVM. However, if you are deploying
a linear classifier such as an SVM, you should probably design an applica-
tion that overlays a Boolean rule-based classifier over the machine-learning
classifier. Users frequently like to adjust things that do not come out quite
right, and if management gets on the phone and wants the classification of
a particular document fixed right now, then this is much easier to do by
hand-writing a rule than by working out how to adjust the weights of an
SVM without destroying the overall classification accuracy. This is one rea-
son why machine-learning models like decision trees, which produce user-
interpretable Boolean-like models, retain considerable popularity.

If a huge amount of data are available, then the choice of classifier probably
has little effect on your results and the best choice may be unclear (cf. Banko
and Brill 2001). It may be best to choose a classifier based on the scalability
of training or even runtime efficiency. To get to this point, you need to have
huge amounts of data. The general rule of thumb is that each doubling of the
training data size produces a linear increase in classifier performance, but
with very large amounts of data, the improvement becomes sublinear.

15.3.2 Improving classifier performance

For any particular application, there is usually significant room for improv-
ing classifier effectiveness through exploiting features specific to the do-
main or document collection. Often documents will contain zones that are
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especially useful for classification. Often there will be particular subvocab-
ularies which demand special treatment for optimal classification effective-
ness.

✄ Large and difficult category taxonomies

If a text classification problem consists of a small number of well-separated
categories, then many classification algorithms are likely to work well. But
many real classification problems consist of a very large number of often
very similar categories. The reader might think of examples like web direc-
tories (the Yahoo! Directory or the Open Directory Project), library classifi-
cation schemes (Dewey Decimal or Library of Congress), or the classifica-
tion schemes used in legal or medical applications. For instance, the Yahoo!
Directory consists of over 200,000 categories in a deep hierarchy. Accurate
classification over large sets of closely related classes is inherently difficult.

Most large sets of categories have a hierarchical structure, and attempting
to exploit the hierarchy by doing hierarchical classification is a promising ap-hierarchical

classification proach. However, at present the effectiveness gains from doing this rather
than just working with the classes that are the leaves of the hierarchy re-
main modest.6 But the technique can be very useful simply to improve the
scalability of building classifiers over large hierarchies. Another simple way
to improve the scalability of classifiers over large hierarchies is the use of
aggressive feature selection. We provide references to some work on hierar-
chical classification in Section 15.5.

A general result in machine learning is that you can always get a small
boost in classification accuracy by combining multiple classifiers, provided
only that the mistakes that they make are at least somewhat independent.
There is now a large literature on techniques such as voting, bagging, and
boosting multiple classifiers. Again, there are some pointers in the refer-
ences. Nevertheless, ultimately a hybrid automatic/manual solution may be
needed to achieve sufficient classification accuracy. A common approach in
such situations is to run a classifier first, and to accept all its high-confidence
decisions, but to put low confidence decisions in a queue for manual review.
Such a process also automatically leads to the production of new training
data that can be used in future versions of the machine learning classifier.
However, note that this is a case in point where the resulting training data is
clearly not randomly sampled from the space of documents.

✄ Features for text

The default in both ad hoc retrieval and text classification is to use terms
as features. However, for text classification, a great deal of mileage can be

6 Using the small hierarchy in Figure 13.1 (page 238) as an example, the leaf classes are ones
like poultry and coffee, as opposed to higher-up classes like industries.
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achieved by designing additional features suited to a specific problem. Un-
like the case of IR query languages, because these features are internal to
the classifier, there is no problem of communicating these features to an end
user. This process is generally referred to as feature engineering. At present,feature

engineering feature engineering remains a human craft, rather than something done by
machine learning. Good feature engineering can often markedly improve the
performance of a text classifier. It is especially beneficial in some of the most
important applications of text classification, like spam and pornography
filtering.

Classification problems will often contain large numbers of terms that can
be conveniently grouped and have a similar vote in text classification prob-
lems. Typical examples might be year mentions or strings of exclamation
marks. Or they may be more specialized tokens like ISBNs or chemical for-
mulas. Often, using them directly in a classifier would greatly increase the
vocabulary without providing classificatory power beyond knowing that,
say, a chemical formula is present. In such cases, the number of features and
feature sparseness can be reduced by matching such items with regular ex-
pressions and converting them into distinguished tokens. Consequently, ef-
fectiveness and classifier speed are normally enhanced. Sometimes all num-
bers are converted into a single feature, but often some value can be had
by distinguishing different kinds of numbers, such as four-digit numbers
(which are usually years) versus other cardinal numbers versus real num-
bers with a decimal point. Similar techniques can be applied to dates, ISBN
numbers, sports game scores, and so on.

Going in the other direction, it is often useful to increase the number of fea-
tures by matching parts of words, and by matching selected multiword pat-
terns that are particularly discriminative. Parts of words are often matched
by character k-gram features. Such features can be particularly good at pro-
viding classification clues for otherwise unknown words when the classifier
is deployed. For instance, an unknown word ending in -rase is likely to be an
enzyme, even if it wasn’t seen in the training data. Good multiword patterns
are often found by looking for distinctively common word pairs (perhaps
using a mutual information criterion between words, in a similar way to its
use in Section 13.5.1 (page 252) for feature selection) and then using feature
selection methods evaluated against classes. They are useful when the com-
ponents of a compound would themselves be misleading as classification
cues. For instance, this would be the case if the keyword ethnic was most
indicative of the categories food and arts, the keyword cleansing was most
indicative of the category home, but the collocation ethnic cleansing instead
indicates the category world news. Some text classifiers also make use of fea-
tures from named entity recognizers (cf. page 178).

Do techniques like stemming and lowercasing (Section 2.2, page 21) help
for text classification? As always, the ultimate test is empirical evaluations
conducted on an appropriate test collection. But it is nevertheless useful to
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note that such techniques have a more restricted chance of being useful for
classification. For IR, you often need to collapse forms of a word like oxy-
genate and oxygenation, because the appearance of either in a document is a
good clue that the document will be relevant to a query about oxygenation.
Given copious training data, stemming necessarily delivers no value for text
classification. If several forms that stem together have a similar signal, the
parameters estimated for all of them will have similar weights. Techniques
like stemming help only in compensating for data sparseness. This can be a
useful role (as noted at the start of this section), but often different forms of
a word can convey significantly different cues about the correct document
classification. Overly aggressive stemming can easily degrade classification
performance.

✄ Document zones in text classification

As discussed in Section 6.1, documents usually have zones, such as mail
message headers like the subject and author, or the title and keywords of
a research article. Text classifiers can usually gain from making use of these
zones during training and classification.

Upweighting document zones. In text classification problems, you can fre-
quently get a nice boost to effectiveness by differentially weighting contri-
butions from different document zones. Often, upweighting title words is
particularly effective (Cohen and Singer 1999, p. 163). As a rule of thumb,
it is often effective to double the weight of title words in text classification
problems. You can also get value from upweighting words from pieces of
text that are not so much clearly defined zones, but where nevertheless evi-
dence from document structure or content suggests that they are important.
Murata et al. (2000) suggest that you can also get value (in an ad hoc retrieval
context) from upweighting the first sentence of a (newswire) document.

Separate feature spaces for document zones. There are two strategies that
can be used for document zones. Above we upweighted words that appear
in certain zones. This means that we are using the same features (that is, pa-
rameters are “tied” across different zones), but we pay more attention to theparameter

tying occurrence of terms in particular zones. An alternative strategy is to have a
completely separate set of features and corresponding parameters for words
occurring in different zones. This is in principle more powerful: A word
could usually indicate the topic Middle East when in the title but Commodities
when in the body of a document. But, in practice, tying parameters is usu-
ally more successful. Having separate feature sets means having two or more
times as many parameters, many of which will be much more sparsely seen
in the training data, and hence with worse estimates, whereas upweighting
has no adverse effects of this sort. Moreover, it is quite uncommon for words
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to have different preferences when appearing in different zones; it is mainly
the strength of their vote that should be adjusted. Nevertheless, ultimately
this is a contingent result, depending on the nature and quantity of the train-
ing data.

Connections to text summarization. In Section 8.7, we mentioned the field
of text summarization, and how most work in that field has adopted the
limited goal of extracting and assembling pieces of the original text that are
judged to be central based on features of sentences that consider the sen-
tence’s position and content. Much of this work can be used to suggest zones
that may be distinctively useful for text classification. For example, Kołcz
et al. (2000) consider a form of feature selection where you classify docu-
ments based only on words in certain zones. Based on text summarization
research, they consider using (i) only the title, (ii) only the first paragraph,
(iii) only the paragraph with the most title words or keywords, (iv) the first
two paragraphs or the first and last paragraphs, or (v) all sentences with a
minimum number of title words or keywords. In general, these positional
feature selection methods produced as good results as mutual information
(Section 13.5.1), and resulted in quite competitive classifiers. Ko et al. (2004)
also took inspiration from text summarization research to upweight sen-
tences with either words from the title or words that are central to the doc-
ument’s content, leading to classification accuracy gains of almost 1%. This
presumably works because most such sentences are somehow more central
to the concerns of the document.

? Exercise 15.4 [		] Spam email often makes use of various cloaking tech-
niques to try to get through. One method is to pad or substitute characters
so as to defeat word-based text classifiers. For example, you see terms like
the following in spam email:

Rep1icaRolex bonmus Viiiaaaagra pi11z
PHARlbdMACY [LEV]i[IT]l[RA] se∧xual ClAfLlS

Discuss how you could engineer features that would largely defeat this
strategy.

Exercise 15.5 [		] Another strategy often used by purveyors of email spam is
to follow the message they wish to send (such as buying a cheap stock or
whatever) with a paragraph of text from another innocuous source (such
as a news article). Why might this strategy be effective? How might it be
addressed by a text classifier?

Exercise 15.6 [	] What other kinds of features appear as if they would be
useful in an email spam classifier?
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15.4 Machine-learning methods in ad hoc information retrieval

Rather than coming up with term and document weighting functions by
hand, as we primarily did in Chapter 6, we can view different sources of rele-
vance signal (cosine score, title match, etc.) as features in a learning problem.
A classifier that has been fed examples of relevant and nonrelevant docu-
ments for each of a set of queries can then figure out the relative weights
of these signals. If we configure the problem so that there are pairs of a
document and a query that are assigned a relevance judgment of relevant
or nonrelevant, then we can think of this problem too as a text classification
problem. Taking such a classification approach is not necessarily best, and
we present an alternative in Section 15.4.2. Nevertheless, given the material
we have covered, the simplest place to start is to approach this problem as
a classification problem, by ordering the documents according to the confi-
dence of a two-class classifier in its relevance decision. And this move is not
purely pedagogical; exactly this approach is sometimes used in practice.

15.4.1 A simple example of machine-learned scoring

In this section, we generalize the methodology of Section 6.1.2 (page 104) to
machine learning of the scoring function. In Section 6.1.2, we considered a case
where we had to combine Boolean indicators of relevance; here we consider
more general factors to further develop the notion of machine-learned rele-
vance. In particular, the factors we now consider go beyond Boolean func-
tions of query term presence in document zones, as in Section 6.1.2.

We develop the ideas in a setting where the scoring function is a linear
combination of two factors: (i) the vector space cosine similarity between
query and document and (ii) the minimum window width ω within which
the query terms lie. As we noted in Section 7.2.2 (page 132), query term prox-
imity is often very indicative of a document being on topic, especially with
longer documents and on the web. Among other things, this quantity gives
us an implementation of implicit phrases. Thus, we have one factor that de-
pends on the statistics of query terms in the document as a bag of words,
and another that depends on proximity weighting. We consider only two
features in the development of the ideas because a two-feature exposition re-
mains simple enough to visualize. The technique can be generalized to many
more features.

As in Section 6.1.2, we are provided with a set of training examples, each
of which is a pair consisting of a query and a document, together with a
relevance judgment for that document on that query that is either relevant or
nonrelevant. For each such example we can compute the vector space cosine
similarity, as well as the window width ω. The result is a training set as
shown in Figure ??, which resembles Figure 6.5 (page 105) from Section 6.1.2.
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Table 15.3 Training examples for machine-learned scoring.

example docID query cosine score ω judgment

�1 37 linux operating system 0.032 3 relevant
�2 37 penguin logo 0.02 4 nonrelevant
�3 238 operating system 0.043 2 relevant
�4 238 runtime environment 0.004 2 nonrelevant
�5 1741 kernel layer 0.022 3 relevant
�6 2094 device driver 0.03 2 relevant
�7 3191 device driver 0.027 5 nonrelevant
· · · · · · · · · · · · · · · · · ·

Here, the two features (cosine score denoted α and window width ω) are
real-valued predictors. If we once again quantify the judgment relevant as 1
and nonrelevant as 0, we seek a scoring function that combines the values of
the features to generate a value that is (close to) 0 or 1. We wish this func-
tion to be in agreement with our set of training examples as far as possible.
Without loss of generality, a linear classifier will use a linear combination of
features of the form

Score(d, q ) = Score(α, ω) = aα + bω + c,(15.17)

with the coefficients a, b, c to be learned from the training data. Although it
is possible to formulate this as an error minimization problem as we did in
Section 6.1.2, it is instructive to visualize the geometry of Equation (15.17).
The examples in Table 15.3 can be plotted on a two-dimensional plane with
axes corresponding to the cosine score α and the window width ω. This is
depicted in Figure 15.7.

In this setting, the function Score(α, ω) from Equation (15.17) represents
a plane “hanging above” Figure 15.7. Ideally, this plane (in the direction
perpendicular to the page containing Figure 15.7) assumes values close to
1 above the points marked R, and values close to 0 above the points marked
N. Becuase a plane is unlikely to assume only values close to 0 or 1 above the
training sample points, we make use of thresholding: Given any query and
document for which we wish to determine relevance, we pick a value θ and
if Score(α, ω) > θ we declare the document to be relevant, else we declare
the document to be nonrelevant. As we know from Figure 14.8 (page 278),
all points that satisfy Score(α, ω) = θ form a line (shown as a dashed line
in Figure 15.7) and we thus have a linear classifier that separates relevant
from nonrelevant instances. Geometrically, we can find the separating line
as follows. Consider the line passing through the plane Score(α, ω) whose
height is θ above the page containing Figure 15.7. Project this line down
onto Figure 15.7; this will be the dashed line in Figure 15.7. Then, any subse-
quent query–document pair that falls below the dashed line in Figure 15.7 is
deemed nonrelevant; above the dashed line, relevant.
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Figure 15.7 A collection of training examples. Each R denotes a training example labeled relevant
and each N is a training example labeled nonrelevant.

Thus, the problem of making a binary relevant/nonrelevant judgment given
training examples as above turns into one of learning the dashed line in Fig-
ure 15.7 separating relevant training examples from the nonrelevant ones. Be-
ing in the α–ω plane, this line can be written as a linear equation involving α

and ω, with two parameters (slope and intercept). The methods of linear clas-
sification that we have already looked at in Chapters 13 through 15 provide
methods for choosing this line. Provided we can build a sufficiently rich col-
lection of training samples, we can thus altogether avoid hand-tuning score
functions as in Section 7.2.3 (page 133). The bottleneck of course is the ability
to maintain a suitably representative set of training examples, whose rele-
vance assessments must be made by experts.

15.4.2 Result ranking by machine learning

These ideas can be readily generalized to functions of many more than two
variables. There are lots of other scores that are indicative of the relevance of a
document to a query, including static quality (PageRank-style measures, dis-
cussed in Chapter 21), document age, zone contributions, document length,
and so on. Providing that these measures can be calculated for a training doc-
ument collection with relevance judgments, any number of such measures
can be used to train a machine-learning classifier. For instance, we could
train an SVM over binary relevance judgments, and order documents based
on their probability of relevance, which is monotonic with the documents’
signed distance from the decision boundary.
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However, approaching IR result ranking like this is not necessarily the
right way to think about the problem. Statisticians normally first divide prob-
lems into classification problems (where a categorical variable is predicted)
versus regression problems (where a real number is predicted). In between isregression

the specialized field of ordinal regression where a ranking is predicted. Ma-ordinal
regression chine learning for ad hoc retrieval is most properly thought of as an ordinal

regression problem, where the goal is to rank a set of documents for a query,
given training data of the same sort. This formulation gives some additional
power, because documents can be evaluated relative to other candidate doc-
uments for the same query, rather than having to be mapped to a global
scale of goodness, while also weakening the problem space; just a ranking
is required rather than an absolute measure of relevance. Issues of ranking
are especially germane for web searches, where the ranking at the very top
of the results list is exceedingly important, whereas decisions of relevance
of a document to a query may be much less important. Such work can and
has been pursued using the structural SVM framework that we mentioned
in Section 15.2.2, where the class being predicted is a ranking of results for a
query, but here we will present the slightly simpler ranking SVM.

The construction of a ranking SVM proceeds as follows. We begin with aranking SVM

set of judged queries. For each training query q , we have a set of documents
returned in response to the query, which have been totally ordered by a per-
son for relevance to the query. We construct a vector of features ψ j = ψ(d j , q )
for each document–query pair, using features such as those discussed in Sec-
tion 15.4.1, and many more. For two documents di and d j , we then form the
vector of feature differences:

�(di , d j , q ) = ψ(di , q ) − ψ(d j , q ).(15.18)

By hypothesis, one of di and d j has been judged more relevant. If di is
judged more relevant than d j , denoted di ≺ d j (di should precede d j in the
results ordering), then we will assign the vector �(di , d j , q ) the class yi jq =
+1; otherwise −1. The goal then is to build a classifier, which will return

�wT�(di , d j , q ) > 0 iff di ≺ d j .(15.19)

This SVM learning task is formalized in a manner much like the other exam-
ples that we saw before:

(15.20) Find �w, and ξi, j ≥ 0 such that:

� 1
2 �wT �w + C

∑
i, j ξi, j is minimized� and for all {�(di , d j , q ) : di ≺ d j }, �wT�(di , d j , q ) ≥ 1 − ξi, j

We can leave out yi jq in the statement of the constraint; we only need to con-
sider the constraint for document pairs ordered in one direction because ≺
is antisymmetric. These constraints are then solved, as before, to give a lin-
ear classifier that can rank pairs of documents. This approach has been used



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

318 Support vector machines and machine learning on documents

to build ranking functions which outperform standard hand-built ranking
functions in IR evaluations on standard data sets; see the references for pa-
pers that present such results.

Both of the methods that we have just looked at use a linear weighting
of document features that are indicators of relevance, as has most work in
this area. It is therefore perhaps interesting to note that much of traditional
IR weighting involves nonlinear scaling of basic measurements (such as log-
weighting of term frequency, or idf). At the present time, machine learning is
very good at producing optimal weights for features in a linear combination
(or other similar restricted model classes), but it is not good at coming up
with good nonlinear scalings of basic measurements. This area remains the
domain of human feature engineering.

The idea of learning ranking functions has been around for a number of
years, but it is only very recently that sufficient machine-learning knowledge,
training document collections, and computational power have come together
to make this method practical and exciting. It is thus too early to write some-
thing definitive on machine-learning approaches to ranking in IR, but there
is every reason to expect the use and importance of machine-learned ranking
approaches to grow over time. Although skilled humans can do a very good
job at defining ranking functions by hand, hand tuning is difficult, and it has
to be done again for each new document collection and class of users.

? Exercise 15.7 Plot the first seven rows of Table 15.3 in the α–ω plane to pro-
duce a figure like that in Figure 15.7.

Exercise 15.8 Write down the equation of a line in the α–ω plane separating
the Rs from the Ns.

Exercise 15.9 Give a training example (consisting of values for α, ω and the
relevance judgment) that when added to the training set makes it impos-
sible to separate the Rs from the Ns using a line in the α–ω plane.

15.5 References and further reading

The somewhat quirky name support vector machine originates in the neural
networks literature, where learning algorithms were thought of as architec-
tures, and often referred to as “machines.” The distinctive element of this
model is that the decision boundary to use is completely decided (“sup-
ported”) by a few training data points, the support vectors.

For a more detailed presentation of SVMs, a good, well-known article-
length introduction is (Burges 1998). Chen et al. (2005) introduce the more
recent ν-SVM, which provides an alternative parameterization for dealing
with inseparable problems, whereby rather than specifying a penalty C , you
specify a parameter ν that bounds the number of examples that can appear
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on the wrong side of the decision surface. There are now also several books
dedicated to SVMs, large margin learning, and kernels: (Cristianini and
Shawe-Taylor 2000) and (Schölkopf and Smola 2001) are more mathemati-
cally oriented, whereas (Shawe-Taylor and Cristianini 2004) aims to be more
practical. For the foundations by their originator, see (Vapnik 1998). Some
recent, more general books on statistical learning, such as (Hastie et al. 2001)
also give thorough coverage of SVMs.

The construction of multiclass SVMs is discussed in (Weston and Watkins
1999), (Crammer and Singer 2001), and (Tsochantaridis et al. 2005). The last
reference provides an introduction to the general framework of structural
SVMs.

The kernel trick was first presented in (Aizerman et al. 1964). For more
about string kernels and other kernels for structured data, see (Lodhi et al.
2002) and (Gaertner et al. 2002). The Advances in Neural Information Pro-
cessing (NIPS) conferences have become the premier venue for theoretical
machine learning work, such as on SVMs. Other venues such as SIGIR are
much stronger on experimental methodology and using text-specific features
to improve classifier effectiveness.

A recent comparison of most current machine learning classifiers (though
on problems rather different from typical text problems) can be found in
(Caruana and Niculescu-Mizil 2006). (Li and Yang 2003), discussed in Sec-
tion 13.6, is the most recent comparative evaluation of machine learning clas-
sifiers on text classification. Older examinations of classifiers on text prob-
lems can be found in (Yang 1999; Yang and Liu 1999; Dumais et al. 1998).
Joachims (2002a) presents his work on SVMs applied to text problems in de-
tail. Zhang and Oles (2001) present an insightful comparison of Naive Bayes,
regularized logistic regression and SVM classifiers.

Joachims (1999) discusses methods of making SVM learning practical over
large text data sets. Joachims (2006a) improves on this work.

A number of approaches to hierarchical classification have been developed
to deal with the common situation where the classes to be assigned have a
natural hierarchical organization (Koller and Sahami 1997; McCallum et al.
1998; Weigend et al. 1999; Dumais and Chen 2000). In a recent large study
on scaling SVMs to the entire Yahoo! directory, Liu et al. (2005) conclude that
hierarchical classification noticeably if still modestly outperforms flat classi-
fication. Classifier effectiveness remains limited by the very small number of
training documents for many classes. For a more general approach that can
be applied to modeling relations between classes, which may be arbitrary
rather than simply the case of a hierarchy, see Tsochantaridis et al. (2005).

Moschitti and Basili (2004) investigate the use of complex nominals, proper
nouns and word senses as features in text classification.

Dietterich (2002) overviews ensemble methods for classifier combination,
while Schapire (2003) focuses particularly on boosting, which is applied to
text classification in (Schapire and Singer 2000).
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Chapelle et al. (2006) present an introduction to work in semi-supervised
methods, including in particular chapters on using EM for semi-supervised
text classification (Nigam et al. 2006) and on transductive SVMs (Joachims
2006b). Sindhwani and Keerthi (2006) present a more efficient implementa-
tion of a transductive SVM for large data sets.

Tong and Koller (2001) explore active learning with SVMs for text classi-
fication; Baldridge and Osborne (2004) point out that examples selected for
annotation with one classifier in an active learning context may be no better
than random examples when used with another classifier.

Machine learning approaches to ranking for ad hoc retrieval were pio-
neered in (Wong et al. 1988), (Fuhr 1992), and (Gey 1994). But limited training
data and poor machine learning techniques meant that these pieces of work
achieved only middling results, and hence they only had limited impact at
the time.

Taylor et al. (2006) study using machine learning to tune the parameters
of the BM25 family of ranking functions (Section 11.4.3, page 213) so as to
maximize NDCG (Section 8.4, page 149). Machine learning approaches to
ordinal regression appear in (Herbrich et al. 2000) and (Burges et al. 2005),
and are applied to clickstream data in (Joachims 2002b). Cao et al. (2006)
study how to make this approach effective in IR, and Qin et al. (2007) suggest
an extension involving using multiple hyperplanes. Yue et al. (2007) study
how to do ranking with a structural SVM approach, and in particular show
how this construction can be effectively used to directly optimize for MAP
(Section 8.4, page 145), rather than using surrogate measures like accuracy or
area under the ROC curve. Geng et al. (2007) study feature selection for the
ranking problem.

Other approaches to learning to rank have also been shown to be effective
for web search, such as (Burges et al. 2005; Richardson et al. 2006).


