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Web search basics

In this and the following two chapters, we consider web search engines. Sec-
tions 19.1 through 19.4 provide some background and history to help the
reader appreciate the forces that conspire to make the Web chaotic, fast-
changing, and (from the standpoint of information retrieval) very different
from the “traditional” collections studied thus far in this book. Sections 19.5
through 19.6 deal with estimating the number of documents indexed by web
search engines, and the elimination of duplicate documents in web indexes,
respectively. These two latter sections serve as background material for the
two following chapters.

19.1 Background and history

HTTP

HTML

The Web is unprecedented in many ways: unprecedented in scale, unprece-
dented in the almost-complete lack of coordination in its creation, and un-
precedented in the diversity of backgrounds and motives of its participants.
Each of these contributes to making web search different — and generally far
harder — than searching “traditional” documents.

The invention of hypertext, envisioned by Vannevar Bush in the 1940s and
first realized in working systems in the 1970s, significantly precedes the for-
mation of the World Wide Web (which we will simply refer to as the Web),
in the 1990s. Web usage has shown tremendous growth to the point where it
now claims a good fraction of humanity as participants, by relying on a sim-
ple, open client-server design: (i) the server communicates with the client
via a protocol (the http or hypertext transfer protocol) that is lightweight and
simple, asynchronously carrying a variety of payloads (text, images, and —
over time — richer media such as audio and video files) encoded in a sim-
ple markup language called HTML (for hypertext markup language); (ii) the
client — generally a browser, an application within a graphical user environ-
ment — can ignore what it does not understand. Each of these seemingly
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innocuous features has contributed enormously to the growth of the Web,
so it is worthwhile to examine them further.

The basic operation is as follows: A client (such as a browser) sends an
http request to a web server. The browser specifies a URL (for universal resource
locator) such as http://www.stanford.edu/home/atoz/contact.html. In
this example URL, the string http refers to the protocol to be used for
transmitting the data. The string www.stanford.edu is known as the do-
main and specifies the root of a hierarchy of web pages (typically mir-
roring a filesystem hierarchy underlying the web server). In this exam-
ple, /home/atoz/contact.html is a path in this hierarchy with a file
contact.html that contains the information to be returned by the web server
at www.stanford.edu in response to this request. The HTML-encoded file
contact.html holds the hyperlinks and the content (in this instance, contact
information for Stanford University), as well as formatting rules for render-
ing this content in a browser. Such an http request thus allows us to fetch the
content of a page, something that will prove to be useful to us for crawling
and indexing documents (Chapter 20).

The designers of the first browsers made it easy to view the HTML markup
tags on the content of a URL. This simple convenience allowed new users to
create their own HTML content without extensive training or experience;
rather, they learned from example content that they liked. As they did so, a
second feature of browsers supported the rapid proliferation of web content
creation and usage: Browsers ignored what they did not understand. This
did not, as one might fear, lead to the creation of numerous incompatible
dialects of HTML. What it did promote was amateur content creators who
could freely experiment with and learn from their newly created web pages
without fear that a simple syntax error would “bring the system down.” Pub-
lishing on the Web became a mass activity that was not limited to a few
trained programmers, but rather open to tens and eventually hundreds of
millions of individuals. For most users and for most information needs, the
Web quickly became the best way to supply and consume information on
everything from rare ailments to subway schedules.

The mass publishing of information on the Web is essentially useless un-
less this wealth of information can be discovered and consumed by other
users. Early attempts at making web information “discoverable” fell into two
broad categories: (i) full-text index search engines such as Altavista, Excite,
and Infoseek and (ii) taxonomies populated with web pages in categories,
such as Yahoo! The former presented the user with a keyword search inter-
face supported by inverted indexes and ranking mechanisms building on
those introduced in earlier chapters. The latter allowed the user to browse
through a hierarchical tree of category labels. Although this is at first blush a
convenient and intuitive metaphor for finding web pages, it has a number of
drawbacks: First, accurately classifying web pages into taxonomy tree nodes
is for the most part a manual editorial process, which is difficult to scale
with the size of the Web. Arguably, we only need to have “high-quality” web
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pages in the taxonomy, with only the best web pages for each category. How-
ever, just discovering these and classifying them accurately and consistently
into the taxonomy entails significant human effort. Furthermore, for a user
to effectively discover web pages classified into the nodes of the taxonomy
tree, the user’s idea of what subtree(s) to seek for a particular topic should
match that of the editors performing the classification. This quickly becomes
challenging as the size of the taxonomy grows; the Yahoo! taxonomy tree
surpassed 1,000 distinct nodes fairly early on. Given these challenges, the
popularity of taxonomies declined over time, even though variants (such as
About.com and the Open Directory Project) sprang up with subject matter
experts collecting and annotating web pages for each category.

The first generation of web search engines transported classical search
techniques such as those in the preceding chapters to the web domain, fo-
cusing on the challenge of scale. The earliest web search engines had to con-
tend with indexes containing tens of millions of documents, which was a
few orders of magnitude larger than any prior information retrieval (IR) sys-
tem in the public domain. Indexing, query serving, and ranking at this scale
required the harnessing together of tens of machines to create highly avail-
able systems, again at scales not witnessed hitherto in a consumer-facing
search application. The first generation of web search engines was largely
successful at solving these challenges while continually indexing a signifi-
cant fraction of the Web, all the while serving queries with subsecond re-
sponse times. However, the quality and relevance of web search results left
much to be desired owing to the idiosyncrasies of content creation on the
Web that we discuss in Section 19.2. This necessitated the invention of new
ranking and spam-fighting techniques to ensure the quality of the search re-
sults. Although classical IR techniques (such as those covered earlier in this
book) continue to be necessary for web search, they are not by any means
sufficient. A key aspect (developed further in Chapter 21) is that whereas
classical techniques measure the relevance of a document to a query, there
remains a need to gauge the authoritativeness of a document based on cues
such as which website hosts it.

19.2 Web characteristics

The essential feature that led to the explosive growth of the web — decentral-
ized content publishing with essentially no central control of authorship —
turned out to be the biggest challenge for web search engines in their quest to
index and retrieve this content. Web page authors created content in dozens
of (natural) languages and thousands of dialects, thus demanding many dif-
ferent forms of stemming and other linguistic operations. Because publish-
ing was now open to tens of millions, web pages exhibited heterogeneity
at a daunting scale, in many crucial aspects. First, content creation was no
longer the privy of editorially trained writers; although this represented a
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Figure 19.1 A dynamically generated web page. The browser sends a request for flight infor-
mation on flight AA129 to the web application, which fetches the information from back-end
databases then creates a dynamic web page that it returns to the browser.

STATIC WEB
PAGES

tremendous democratization of content creation, it also resulted in a tremen-
dous variation in grammar and style (and in many cases, no recognizable
grammar or style). Indeed, web publishing in a sense unleashed the best and
worst of desktop publishing on a planetary scale, so that pages quickly be-
came riddled with wild variations in colors, fonts, and structure. Some web
pages, including the professionally created home pages of some large cor-
porations, consisted entirely of images (which, when clicked, led to richer
textual content) — and therefore, no indexable text.

What about the substance of the text in web pages? The democratization
of content creation on the web meant a new level of granularity in opinion on
virtually any subject. This meant that the web contained truth, lies, contra-
dictions, and suppositions on a grand scale. This gives rise to the question:
Which web pages does one trust? In a simplistic approach, one might argue
that some publishers are trustworthy and others not — begging the question
of how a search engine is to assign such a measure of trust to each website
or web page. In Chapter 21, we will examine approaches to understanding
this question. More subtly, there may be no universal, user-independent
notion of trust; a web page whose contents are trustworthy to one user may
not be so to another. In traditional (nonweb) publishing this is not an issue:
users self-select sources they find trustworthy. Thus one reader may find the
reporting of The New York Times to be reliable, whereas another may prefer
The Wall Street Journal. But when a search engine is the only viable means
for a user to become aware of (let alone select) most content, this challenge
becomes significant.

Although the question “how big is the Web?” has no easy answer (see Sec-
tion 19.5), the question “how many web pages are in a search engine’s index”
is more precise, although, even this question has issues. By the end of 1995,
Altavista reported that it had crawled and indexed approximately 30 mil-
lion static web pages. Static web pages are those whose content does not vary
from one request for that page to the next. For this purpose, a professor who
manually updates his home page every week is considered to have a static
web page, but an airport’s flight status page is considered to be dynamic.
Dynamic pages are typically mechanically generated by an application server
in response to a query to a database, as show in Figure 19.1. One sign of
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Figure 19.2 Two nodes of the web graph joined by a link.

such a page is that the URL has the character “?” in it. Because the number
of static web pages was believed to be doubling every few months in 1995,
early web search engines such as Altavista had to constantly add hardware
and bandwidth for crawling and indexing web pages.

19.2.1 The web graph

We can view the static Web consisting of static HTML pages together with
the hyperlinks between them as a directed graph in which each web page is
anode and each hyperlink a directed edge.

Figure 19.2 shows two nodes A and B from the web graph, each corre-
sponding to a web page, with a hyperlink from A to B. We refer to the set of
all such nodes and directed edges as the web graph. Figure 19.2 also shows
that (as is the case with most links on web pages) there is some text surround-
ing the origin of the hyperlink on page A. This text is generally encapsulated
in the href attribute of the <a> (for anchor) tag that encodes the hyperlink

ancHOR TEXT in the HTML code of page A, and is referred to as anchor text. As one might
suspect, this directed graph is not strongly connected: There are pairs of pages
such that one cannot proceed from one page of the pair to the other by fol-
IN-LINKS lowing hyperlinks. We refer to the hyperlinks into a page as in-links and those
out-LINKS out of a page as out-links. The number of in-links to a page (also known as
its in-degree) has averaged from roughly eight to fifteen, in a range of studies.
We similarly define the out-degree of a web page to be the number of links

out of it. These notions are represented in Figure 19.3.

There is ample evidence that these links are not randomly distributed; for
one thing, the distribution of the number of links into a web page does not
follow the Poisson distribution one would expect if every web page were to
pick the destinations of its links uniformly at random. Rather, this distribu-

POWER Law tion is widely reported to be a power law, in which the total number of web
pages with in-degree i is proportional to 1/i%; the value of « typically re-
ported by studies is 2.1.! Furthermore, several studies have suggested that

BowTIE the directed graph connecting web pages has a bowtie shape: there are three
major categories of web pages that are sometimes referred to as IN, OUT,
and SCC. A web surfer can pass from any page in IN to any page in SCC, by
following hyperlinks. Likewise, a surfer can pass from page in SCC to any

L Cf. Zipf’s law of the distribution of words in text in Chapter 5 (page 83), which is a power
law with o = 1.
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Figure 19.3 A sample small web graph. In this example we have six pages labeled A through F.
Page B has in-degree 3 and out-degree 1. This example graph is not strongly connected: There is
no path from any of pages B through F to page A.

page in OUT. Finally, the surfer can surf from any page in SCC to any other
page in SCC. However, it is not possible to pass from a page in SCC to any
page in IN, or from a page in OUT to a page in SCC (or, consequently, IN).
Notably, in several studies IN and OUT are roughly equal in size, whereas
SCC is somewhat larger; most web pages fall into one of these three sets. The
remaining pages form into tubes that are small sets of pages outside SCC that
lead directly from IN to OUT, and tendrils that either lead nowhere from IN,
or from nowhere to OUT. Figure 19.4 illustrates this structure of the Web.

19.2.2 Spam

Early in the history of web search, it became clear that web search engines
were an important means for connecting advertisers to prospective buyers.
A user searching for maui golf real estate is not merely seeking news or en-
tertainment on the subject of housing on golf courses on the island of Maui,
but instead likely to be seeking to purchase such a property. Sellers of such

..Tendrils ..

Tube

Figure 19.4 The bowtie structure of the Web. Here we show one tube and three tendrils.
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content
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Figure 19.5 Cloaking as used by spammers.

SPAM

PAID
INCLUSION

property and their agents, therefore, have a strong incentive to create web
pages that rank highly on this query. In a search engine whose scoring was
based on term frequencies, a web page with numerous repetitions of maui golf
real estate would rank highly. This led to the first generation of spam, which
(in the context of web search) is the manipulation of web page content for
the purpose of appearing high up in search results for selected keywords.
To avoid irritating users with these repetitions, sophisticated spammers re-
sorted to such tricks as rendering these repeated terms in the same color as
the background. Despite these words being consequently invisible to the hu-
man user, a search engine indexer would parse the invisible words out of
the HTML representation of the web page and index these words as being
present in the page.

At its root, spam stems from the heterogeneity of motives in content cre-
ation on the Web. In particular, many web content creators have commercial
motives and therefore stand to gain from manipulating search engine results.
You might argue that this is no different from a company that uses large fonts
to list its phone numbers in the yellow pages; but this generally costs the
company more and is thus a fairer mechanism. A more apt analogy, perhaps,
is the use of company names beginning with a long string of As to be listed
early in a yellow pages category. In fact, the yellow pages” model of com-
panies paying for larger/darker fonts has been replicated in web search: In
many search engines, it is possible to pay to have one’s web page included
in the search engine’s index — a model known as paid inclusion. Different
search engines have different policies on whether to allow paid inclusion,
and whether such a payment has any effect on ranking in search results.

Search engines soon became sophisticated enough in their spam detection
to screen out a large number of repetitions of particular keywords. Spam-
mers responded with a richer set of spam techniques, the best known of
which we now describe. The first of these techniques is cloaking, shown
in Figure 19.5. Here, the spammer’s web server returns different pages
depending on whether the http request comes from a web search engine’s
crawler (the part of the search engine that gathers web pages, to be described
in Chapter 20), or from a human user’s browser. The former causes the web
page to be indexed by the search engine under misleading keywords. When
the user searches for these keywords and elects to view the page, he receives
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a web page that has altogether different content than that indexed by the
search engine. Such deception of search indexers is unknown in the tradi-
tional world of IR; it stems from the fact that the relationship between page
publishers and web search engines is not completely collaborative.

A doorway page contains text and metadata carefully chosen to rank highly
on selected search keywords. When a browser requests the doorway page, it
is redirected to a page containing content of a more commercial nature. More
complex spamming techniques involve manipulation of the metadata related
to a page including (for reasons we will see in Chapter 21) the links into a
web page. Given that spamming is inherently an economically motivated ac-
tivity, there has sprung around it an industry of search engine optimizers, or
SEOs, to provide consultancy services for clients who seek to have their web
pages rank highly on selected keywords. Web search engines frown on this
business of attempting to decipher and adapt to their proprietary ranking
techniques and indeed announce policies on forms of SEO behavior they do
not tolerate (and have been known to shut down search requests from cer-
tain SEOs for violation of these). Inevitably, the parrying between such SEOs
(who gradually infer features of each web search engine’s ranking methods)
and the web search engines (who adapt in response) is an unending strug-
gle; indeed, the research subarea of adversarial information retrieval has sprung
up around this battle. To combat spammers who manipulate the text of their
web pages is the exploitation of the link structure of the Web — a technique
known as link analysis. The first web search engine known to apply link anal-
ysis on a large scale (to be detailed in Chapter 21) was Google, although all
web search engines currently make use of it (and correspondingly, spammers
now invest considerable effort in subverting it — this is known as link spam).

Exercise 19.1 If the number of pages with in-degree i is proportional to 1/i%!,
what is the probability that a randomly chosen web page has in-degree 17?

Exercise 19.2 If the number of pages with in-degree i is proportional to 1/i%1,
what is the average in-degree of a web page?

Exercise 19.3 If the number of pages with in-degree i is proportional to 1/i%!,
then as the largest in-degree goes to infinity, does the fraction of pages with
in-degree i grow, stay the same, or diminish? How would your answer
change for values of the exponent other than 2.1?

Exercise 19.4 The average in-degree of all nodes in a snapshot of the web
graph is 9. What can we say about the average out-degree of all nodes in
this snapshot?

19.3 Advertising as the economic model

Early in the history of the Web, companies used graphical banner advertise-
ments on web pages at popular websites (news and entertainment sites such
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as MSN, America Online, Yahoo!, and CNN). The primary purpose of these
advertisements was branding: to convey to the viewer a positive feeling about
the brand of the company placing the advertisement. Typically these adver-
tisements are priced on a cost per mil (CPM) basis: the cost to the company of
having its banner advertisement displayed 1,000 times. Some websites struck
contracts with their advertisers in which an advertisement was priced not by
the number of times it is displayed (also known as impressions), but rather by
the number of times it is clicked on by the user. This pricing model is known
as the cost per click (CPC) model. In such cases, clicking on the advertisement
leads the user to a web page set up by the advertiser, where the user is in-
duced to make a purchase. Here, the goal of the advertisement is not so much
brand promotion as to induce a transaction. This distinction between brand-
and transaction-oriented advertising was already widely recognized in the
context of conventional media such as broadcast and print. The interactiv-
ity of the web allowed the CPC billing model — clicks could be metered and
monitored by the website and billed to the advertiser.

The pioneer in this direction was a company named Goto, which changed
its name to Overture before eventual acquisition by Yahoo! Goto was not, in
the traditional sense, a search engine; rather, for every query term g it ac-
cepted bids from companies who wanted their web page shown on the query
g. In response to the query g, Goto would return the pages of all advertis-
ers who bid for g, ordered by their bids. Furthermore, when the user clicked
on one of the returned results, the corresponding advertiser would make a
payment to Goto (in the initial implementation, this payment equaled the
advertiser’s bid for g).

Several aspects of Goto’s model are worth highlighting. First, a user typ-
ing the query g into Goto’s search interface was actively expressing an in-
terest and intent related to the query 4. For instance, a user typing golf clubs
is more likely to be imminently purchasing a set than one who is simply
browsing news on golf. Second, Goto only got compensated when a user
actually expressed interest in an advertisement — as evinced by the user click-
ing the advertisement. Taken together, these created a powerful mechanism
by which to connect advertisers to consumers, quickly raising the annual
revenues of Goto/Overture into hundreds of millions of dollars. This style
of search engine came to be known variously as sponsored search or search
advertising.

Given these two kinds of search engines — the “pure” search engines such
as Google and Altavista versus the sponsored search engines — the logi-
cal next step was to combine them into a single user experience. Current
search engines follow precisely this model: They provide pure search re-
sults (generally known as algorithmic search results) as the primary response
to a user’s search, together with sponsored search results displayed sepa-
rately and distinctively to the right of the algorithmic results. This is shown
in Figure 19.6. Retrieving sponsored search results and ranking them in re-
sponse to a query has now become considerably more sophisticated than

16:11



P1: KRU/IRP
irbook

CUUS232/Manning 978 0 521 86571 5 May 27, 2008
394 Web search basics
Web | Images | Video | Local | Shopping | more »
hHOO!@SEARCH [A320 | [(Search ] Advanced searcn
Search Results 1-10 of about 5,050,000 for A320 - 0.22 sec. (About this page)
@ Also try: airbus a320, a320 family, airbus industrie a320, a320 type rating More... SPONSORRESULTS
. i L : WADS A320 -
1. Airbus A320 family - Wikipedia, the free encyclopedia Refurbished
more than 3,000 aircraft of the A320 family built, it is the second best .. 2390 = on <ala
Airbus intends to relocate Toulouse A320 final assembly activity to Hamburg 23;0248\'} ggle_ ff?;: %93525'
as .
en.wikipedia.org/wiki/Airbus_A320 - 112k - Cached mhrilectric.com
2. Airbus A320 - Airliners.net
Offers a history, i photos, and per data of the Airbus W

A320.

www_airliners.net/info/stats. main?id=23 - 26k

Connect Your PC to Your
Bluetooth Stereo Headset

3. Airbus: A320 Family with the Jabra a320s.

From the official Airbus site, featuring information on the Airbus A318, A319,

www.hellodirect.com/jabra-

A320, and A321. a320s

www airhiie ram/an/aircraftfamilioe/a320 - 12k

Figure 19.6 Search advertising triggered by query keywords. Here the query A320 returns al-
gorithmic search results about the Airbus aircraft, together with advertisements for various non-
aircraft goods numbered A320 that advertisers seek to market to those querying on this query.
The lack of advertisements for the aircraft reflects the fact that few marketers attempt to sell A320
aircraft on the web.
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the simple Goto scheme; the process entails a blending of ideas from IR and
microeconomics, and is beyond the scope of this book. For advertisers, un-
derstanding how search engines do this ranking and how to allocate mar-
keting campaign budgets to different keywords and to different sponsored
search engines has become a profession known as search engine marketing
(SEM).

The inherently economic motives underlying sponsored search give rise
to attempts by some participants to subvert the system to their advantage.
This can take many forms, one of which is known as click spam. There is
currently no universally accepted definition of click spam. It refers (as the
name suggests) to clicks on sponsored search results that are not from bona
fide search users. For instance, a devious advertiser may attempt to exhaust
the advertising budget of a competitor by clicking repeatedly (through the
use of a robotic click generator) on that competitor’s sponsored search ad-
vertisements. Search engines face the challenge of discerning which of the
clicks they observe are part of a pattern of click spam, to avoid charging their
advertiser clients for such clicks.

Exercise 19.5 The Goto method ranked advertisements matching a query by
bid: the highest-bidding advertiser got the top position, the second-highest
the next, and so on. What can go wrong with this when the highest-
bidding advertiser places an advertisement that is irrelevant to the query?
Why might an advertiser with an irrelevant advertisement bid high in this
manner?

Exercise 19.6 Suppose that, in addition to bids, we had for each advertiser
their click-through rate, the ratio of the historical number of times users
click on their advertisement to the number of times the advertisement was
shown. Suggest a modification of the Goto scheme that exploits this data
to avoid the problem in Exercise 19.5 above.
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19.4 The search user experience

It is crucial that we understand the users of web search as well. This is again
a significant change from traditional IR, where users were typically profes-
sionals with at least some training in the art of phrasing queries over a well-
authored collection whose style and structure they understood well. In con-
trast, web search users tend to not know (or care) about the heterogeneity of
web content, the syntax of query languages, and the art of phrasing queries;
indeed, a mainstream tool (as web search has come to become) should not
place such onerous demands on billions of people. A range of studies has
concluded that the average number of keywords in a web search is some-
where between two and three. Syntax operators (Boolean connectives, wild-
cards, etc.) are seldom used, again a result of the composition of the audi-
ence — “normal” people, not information scientists.

It is clear that the more user traffic a web search engine can attract, the
more revenue it stands to earn from sponsored search. How do search en-
gines differentiate themselves and grow their traffic? Here, Google identified
two principles that helped it to grow at the expense of its competitors: (i) A
focus on relevance, specifically precision rather than recall in the first few
results; and (ii) a user experience that is lightweight, meaning that both the
search query page and the search results page are uncluttered and almost
entirely textual, with very few graphical elements. The effect of the first was
simply to save users time in locating the information they sought. The effect
of the second is to provide a user experience that is extremely responsive, or
at any rate not bottlenecked by the time to load the search query or results

page.

19.4.1 User query needs

INFORMATIONAL

QUERIES

NAVIGATIONAL
QUERIES

There appear to be three broad categories into which common web search
queries can be grouped: (i) informational, (ii) navigational, and (iii) transac-
tional. We now explain these categories; it should be clear that some queries
will fall in more than one of these categories, while others will fall outside
them.

Informational queries seek general information on a broad topic, such as
leukemia or Provence. There is typically not a single web page that contains
all the information sought; indeed, users with informational queries typically
try to assimilate information from multiple web pages.

Navigational queries seek the website or home page of a single entity that the
user has in mind, say Lufthansa airlines. In such cases, the user’s expectation
is that the very first search result should be the home page of Lufthansa.
The user is not interested in a plethora of documents containing the term
Lufthansa; for such a user, the best measure of user satisfaction is precision
at 1.
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TRANSACTIONAL

QUERY

Indexes Ad indexes
Figure 19.7 The various components of a web search engine.

A transactional query is one that is a prelude to the user performing a trans-
action on the Web — such as purchasing a product, downloading a file, or
making a reservation. In such cases, the search engine should return results
listing services that provide form interfaces for such transactions.

Discerning which of these categories a query falls into can be challeng-
ing. The category not only governs the algorithmic search results, but the
suitability of the query for sponsored search results (since the query may re-
veal an intent to purchase). For navigational queries, some have argued that
the search engine should return only a single result or even the target web
page directly. Nevertheless, web search engines have historically engaged in
a battle of bragging rights over which one indexes more web pages. Does the
user really care? Perhaps not, but the media does highlight estimates (often
statistically indefensible) of the sizes of various search engines. Users are in-
fluenced by these reports and thus, search engines do have to pay attention
to how their index sizes compare to competitors’. For informational (and to
a lesser extent, transactional) queries, the user does care about the compre-
hensiveness of the search engine.

Figure 19.7 shows a composite picture of a web search engine including the
crawler, as well as both the web page and advertisement indexes. The portion
of the figure under the curved dashed line is internal to the search engine.

19.5 Index size and estimation

To a first approximation, comprehensiveness grows with index size, al-
though it does matter which specific pages a search engine indexes — some

16:11



P1: KRU/IRP

irbook

CUUS232/Manning 978 0 521 86571 5 May 27, 2008

CAPTURE—
RECAPTURE
METHOD

19.5 Index size and estimation 397

pages are more informative than others. It is also difficult to reason about
the fraction of the Web indexed by a search engine, because there is an infi-
nite number of dynamic web pages; for instance, http://www.yahoo.com/
any_string returns a valid HIML page rather than an error, politely inform-
ing the user that there is no such page at Yahoo! Such a “soft 404 error” is
only one example of many ways in which web servers can generate an infi-
nite number of valid web pages. Indeed, some of these are malicious spider
traps devised to cause a search engine’s crawler (the component that sys-
tematically gathers web pages for the search engine’s index, described in
Chapter 20) to stay within a spammer’s website and index many pages from
that site.

We could ask the following better defined question: Given two search en-
gines, what are the relative sizes of their indexes? Even this question turns
out to be imprecise, for the following reasons.

1. In response to queries, a search engine can return web pages whose con-
tents it has not (fully or even partially) indexed. For one thing, search en-
gines generally index only the first few thousand words in a web page. In
some cases, a search engine is aware of a page p that is linked to by pages
it has indexed, but has not indexed p itself. As we will see in Chapter 21,
it is still possible to meaningfully return p in search results.

2. Search engines generally organize their indexes in various tiers and parti-
tions, not all of which are examined on every search (recall tiered indexes
from Section 7.2.1). For instance, a web page deep inside a website may
be indexed but not retrieved on general web searches; it is, however, re-
trieved as a result on a search that a user has explicitly restricted to that
website (such site-specific search is offered by most web search engines).

Thus, search engine indexes include multiple classes of indexed pages, so
that there is no single measure of index size. These issues notwithstanding,
a number of techniques have been devised for crude estimates of the ratio of
the index sizes of two search engines, E; and E;. The basic hypothesis under-
lying these techniques is that each search engine indexes a fraction of the Web
chosen independently and uniformly at random. This involves some ques-
tionable assumptions: first, that there is a finite size for the Web from which
each search engine chooses a subset, and second, that each engine chooses
an independent, uniformly chosen subset. As will be clear from the discus-
sion of crawling in Chapter 20, this is far from true. However, if we begin
with these assumptions, then we can invoke a classical estimation technique
known as the capture—recapture method.

Suppose that we could pick a random page from the index of E; and test
whether it is in E;’s index and symmetrically, test whether a random page
from E; is in E;. These experiments give us fractions x and y such that our
estimate is that a fraction x of the pages in E; are in E,, while a fraction y
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of the pages in E; are in E;. Then, letting | E;| denote the size of the index of
search engine E;, we have

x|E1]l ~ y|E,|,

from which we have the form we will use

Bl Y

|Eal  x
If our assumption about E; and E; being independent and uniform random
subsets of the Web were true, and our sampling process unbiased, then Equa-
tion (19.1) should give us an unbiased estimator for |E;|/| E;|. We distinguish
between two scenarios here. Either the measurement is performed by some-
one with access to the index of one of the search engines (say an employee of
E1), or the measurement is performed by an independent party with no ac-
cess to the innards of either search engine. In the former case, we can simply
pick arandom document from one index. The latter case is more challenging;
we pick a random page from one search engine from outside the search engine,
then verify whether the random page is present in the other search engine.

To implement the sampling phase, we might generate a random page from

the entire (idealized, finite) Web and test it for presence in each search engine.
Unfortunately, picking a web page uniformly at random is a difficult prob-
lem. We briefly outline several attempts to achieve such a sample, pointing
out the biases inherent to each; after this we describe in some detail one tech-
nique that much research has built on.

1. Random searches: Begin with a search log of web searches; send a random
search from this log to E; and a random page from the results. Because
such logs are not widely available outside a search engine, one imple-
mentation is to trap all search queries going out of a work group (say
scientists in a research center) that agrees to have all its searches logged.
This approach has a number of issues, including the bias from the types
of searches made by the work group. Further, a random document from
the results of such a random search to E; is not the same as a random
document from E;.

2. Random IP addresses: A second approach is to generate random IP ad-
dresses and send a request to a web server residing at the random ad-
dress, collecting all pages at that server. The biases here include the fact
that many hosts might share one IP (due to a practice known as virtual
hosting) or not accept http requests from the host where the experiment
is conducted. Furthermore, this technique is more likely to hit one of the
many sites with few pages, skewing the document probabilities; we may
be able to correct for this effect if we understand the distribution of the
number of pages on websites.

3. Random walks: If the web graph were a strongly connected directed graph,
we could run a random walk starting at an arbitrary web page. This
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walk would converge to a steady state distribution (see Chapter 21, Sec-
tion 21.2.1 for more background material on this), from which we could in
principle pick a web page with a fixed probability. This method, too, has
a number of biases. First, the Web is not strongly connected so that, even
with various corrective rules, it is difficult to argue that we can reach a
steady-state distribution starting from any page. Second, the time it takes
for the random walk to settle into this steady state is unknown and could
exceed the length of the experiment.

Clearly, each of these approaches is far from perfect. We now describe a
fourth sampling approach, random queries. This approach is noteworthy for
two reasons: It has been successfully built upon for a series of increasingly
refined estimates, and conversely it has turned out to be the approach most
likely to be misinterpreted and carelessly implemented, leading to mislead-
ing measurements. The idea is to pick a page (almost) uniformly at random
from a search engine’s index by posing a random query to it. It should be
clear that picking a set of random terms from (say) Webster’s Dictionary is
not a good way of implementing this idea. For one thing, not all vocabulary
terms occur equally often, so this approach will not result in documents be-
ing chosen uniformly at random from the search engine. For another, there
are a great many terms in web documents that do not occur in a standard dic-
tionary such as Webster’s. To address the problem of vocabulary terms not in
a standard dictionary, we begin by amassing a sample web dictionary. This
could be done by crawling a limited portion of the Web, or by crawling a
manually assembled representative subset of the Web such as Yahoo! (as was
done in the earliest experiments with this method). Consider a conjunctive
query with two or more randomly chosen words from this dictionary.

Operationally, we proceed as follows: We use a random conjunctive query
on E; and pick from the top 100 returned results a page p at random. We
then test p for presence in E, by choosing six to eight low-frequency terms
in p and using them in a conjunctive query for E;. We can improve the esti-
mate by repeating the experiment a large number of times. Both the sampling
process and the testing process have a number of issues.

1. Our sample is biased toward longer documents.

2. Picking from the top 100 results of E; induces a bias from the ranking
algorithm of E;. Picking from all the results of E; makes the experiment
slower. This is particularly so because most web search engines put up
defenses against excessive robotic querying.

3. During the checking phase, a number of additional biases are introduced;
for instance, E, may not handle eight-word conjunctive queries properly.

4. Either E; or E, may refuse to respond to the test queries, treating them as
robotic spam rather than as bona fide queries.

5. There could be operational problems like connection time outs.
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A sequence of research has built on this basic paradigm to eliminate some
of these issues; there is no perfect solution yet, but the level of sophistication
in statistics for understanding the biases is increasing. The main idea is to
address biases by estimating, for each document, the magnitude of the bias.
From this, standard statistical sampling methods can generate unbiased sam-
ples. In the checking phase, the newer work moves away from conjunctive
queries to phrase and other queries that appear to be better-behaved. Finally,
newer experiments use other sampling methods besides random queries.
The best known of these is document random walk sampling, in which a doc-
ument is chosen by a random walk on a virtual graph derived from docu-
ments. In this graph, nodes are documents; two documents are connected by
an edge if they share two or more words in common. The graph is never in-
stantiated; rather, a random walk on it can be performed by moving from a
document d to another by picking a pair of keywords in d, running a query
on a search engine and picking a random document from the results. Details
may be found in the references in Section 19.7.

? Exercise 19.7 Two web search engines A and B each generate a large number
[

of pages uniformly at random from their indexes. Thirty percent of A’s
pages are present in B’s index, and 50% of B’s pages are present in A’s
index. What is the number of pages in A’s index relative to B’s?

19.6 Near-duplicates and shingling

One aspect we have ignored in the discussion of index size in Section 19.5 is
duplication: The Web contains multiple copies of the same content. By some
estimates, as many as 40% of the pages on the Web are duplicates of other
pages. Many of these are legitimate copies; for instance, certain information
repositories are mirrored simply to provide redundancy and access reliabil-
ity. Search engines try to avoid indexing multiple copies of the same content,
to keep down storage and processing overheads.

The simplest approach to detecting duplicates is to compute, for each web
page, a fingerprint that is a succinct (say 64-bit) digest of the characters on that
page. Then, whenever the fingerprints of two web pages are equal, we test
whether the pages themselves are equal and if so declare one of them to be a
duplicate copy of the other. This simplistic approach fails to capture a crucial
and widespread phenomenon on the Web: near duplication. In many cases,
the contents of one web page are identical to those of another except for a
few characters — say, a notation showing the date and time at which the page
was last modified. Even in such cases, we want to be able to declare the two
pages to be close enough that we only index one copy. Short of exhaustively
comparing all pairs of web pages, an infeasible task at the scale of billions of
pages, how can we detect and filter out such near duplicates?
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Figure 19.8 Illustration of shingle sketches. We see two documents going through four stages
of shingle sketch computation. In the first step (top row), we apply a 64-bit hash to each shingle
from each document to obtain H(d:) and H(d,) (circles). Next, we apply a random permutation IT
to permute H(d;) and H(d,), obtaining I1(d;) and I1(d,) (squares). The third row shows only IT(d;)
and I1(d,); the bottom row shows the minimum values x] and xJ for each document.

We now describe a solution to the problem of detecting near-duplicate web
SHINGLING pages. The answer lies in a technique known as shingling (Figure 19.8). Given
a positive integer k and a sequence of terms in a document d, define the k-
shingles of d to be the set of all consecutive sequences of k terms in d. As an
example, consider the following text: a rose is a rose is a rose. The 4-shingles
for this text (k = 4 is a typical value used in the detection of near-duplicate
web pages) are a rose is a, rose is a rose, and is a rose is. The first two of these
shingles each occur twice in the text. Intuitively, two documents are near
duplicates if the sets of shingles generated from them are nearly the same.
We now make this intuition precise, then develop a method for efficiently
computing and comparing the sets of shingles for all web pages.

Let 5(d;) denote the set of shingles of document d ;. Recall the Jaccard coef-
ficient from page 56, which measures the degree of overlap between the sets
S(d1) and S(d>) as |S(d1) N S(d2)]/15(d1) U S(d2)|; denote this by | (S(d1), S(d2)).
Our test for near duplication between d; and d; is to compute this Jaccard
coefficient; if it exceeds a preset threshold (say, 0.9), we declare them near
duplicates and eliminate one from indexing. However, this does not appear
to have simplified matters: We still have to compute Jaccard coefficients pair-
wise.

To avoid this, we use a form of hashing. First, we map every shingle into
a hash value over a large space, say 64 bits. For j =1, 2, let H(d;) be the
corresponding set of 64-bit hash values derived from S(d;). We now invoke
the following trick to detect document pairs whose sets H() have large Jac-
card overlaps. Let 7 be a random permutation from the 64-bit integers to the
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Figure 19.9 Two sets S; and S, ; their Jaccard coefficient is 2/5.

(19.2)

64-bit integers. Denote by I1(d;) the set of permuted hash values in H(d;);
thus for each h € H(d,), there is a corresponding value 7 (h) € I1(d;).
Let x7 be the smallest integer in I1(d;). Then

Theorem 19.1.
J (8(dh), S(d2)) = P(x] = x3).

Proof: We give the proof in a slightly more general setting: Consider a family
of sets whose elements are drawn from a common universe. View the sets
as columns of a matrix A, with one row for each element in the universe.
The element a;; = 1 if element i is present in the set S; that the jth column
represents.

Let IT be a random permutation of the rows of A; denote by I1(S;) the
column that results from applying IT to the jth column. Finally, let x7 be the
index of the first row in which the column I1(S;) has a 1. We then prove that
for any two columns ji, jo,

P(x;’1 = x}fz) =J(Sj,, S,)-

If we can prove this, the theorem follows.

Consider two columns jj, j» as shown in Figure 19.9. The ordered pairs of
entries of S;, and S;, partition the rows into four types: Those with Os in both
of these columns, those witha 0 in S;, and a 1in §j,, those witha 1in S, and
a0in Sj,, and finally those with 1s in both of these columns. Indeed, the first
four rows of Figure 19.9 exemplify all of these four types of rows. Denote by
Coo the number of rows with Os in both columns, Cy, the second, C the third
and Cy; the fourth. Then,

Cn

5., 8)= —
J (S 5i) Co1 +Ci0+Cn

To complete the proof by showing that the right-hand side of Equation (19.2)
equals P(x7 = x7)), consider scanning columns ji, j, in increasing row index
until the first nonzero entry is found in either column. Because IT is a random
permutation, the probability that this smallest row has a 1 in both columns
is exactly the right-hand side of Equation (19.2). O
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Thus, our test for the Jaccard coefficient of the shingle sets is probabilis-
tic; we compare the computed values x from different documents. If a pair
coincides, we have candidate near duplicates. Repeat the process indepen-
dently for 200 random permutations 7 (a choice suggested in the literature).
Call the set of the 200 resulting values of x7 the sketch y(d;) of d;. We can
then estimate the Jaccard coefficient for any pair of documents d;, d; to be
[¥i N ;1/200; if this exceeds a preset threshold, we declare that d; and d; are
similar.

How can we quickly compute |¢; N ;{/200 for all pairs 7, j? Indeed, how
do we represent all pairs of documents that are similar, without incurring
a blowup that is quadratic in the number of documents? First, we use fin-
gerprints to remove all but one copy of identical documents. We may also
remove common HTML tags and integers from the shingle computation, to
eliminate shingles that occur very commonly in documents without telling
us anything about duplication. Next we use a union-find algorithm to create
clusters that contain documents that are similar. To do this, we must accom-
plish a crucial step: going from the set of sketches to the set of pairs 7, j such
that d; and d; are similar.

To this end, we compute the number of shingles in common for any pair
of documents whose sketches have any members in common. We begin with
the list < x7, d; > sorted by x pairs. For each x7, we can now generate all
pairs i, j for which x7 is present in both their sketches. From these we can
compute, for each pair i, j with nonzero sketch overlap, a count of the num-
ber of x* values they have in common. By applying a preset threshold, we
know which pairs i, j have heavily overlapping sketches. For instance, if the
threshold were 80%, we would need the count to be at least 160 for any 7, j.
As we identify such pairs, we run the union-find to group documents into
near-duplicate “syntactic clusters.” This is essentially a variant of the single-
link clustering algorithm introduced in Section 17.2 (page 350).

One final trick cuts down the space needed in the computation of [y; N
¥1/200 for pairs i, j, which in principle could still demand space quadratic
in the number of documents. To remove from consideration those pairs i, j
whose sketches have few shingles in common, we preprocess the sketch for
each document as follows: Sort the x7 in the sketch, then shingle this sorted
sequence to generate a set of super-shingles for each document. If two docu-
ments have a super-shingle in common, we proceed to compute the precise
value of [y; N;]/200. This again is a heuristic, but can be highly effective
in cutting down the number of i, j pairs for which we accumulate the sketch
overlap counts.

? Exercise 19.8 Web search engines A and B each crawl a random subset of
[

the same size of the Web. Some of the pages crawled are duplicates — ex-
act textual copies of each other at different URLs. Assume that duplicates
are distributed uniformly amongst the pages crawled by A and B. Further,
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assume that a duplicate is a page that has exactly two copies — no pages
have more than two copies. A indexes pages without duplicate elimina-
tion, whereas B indexes only one copy of each duplicate page. The two
random subsets have the same size before duplicate elimination. If 45% of
A’s indexed URLs are present in B’s index, and 50% of B’s indexed URLs
are present in A’s index, what fraction of the Web consists of pages that do
not have a duplicate?

Exercise 19.9 Instead of using the process depicted in Figure 19.8, consider
instead the following process for estimating the Jaccard coefficient of the
overlap between two sets S; and S;. We pick a random subset of the ele-
ments of the universe from which S; and S, are drawn; this corresponds
to picking a random subset of the rows of the matrix A in the proof.
We exhaustively compute the Jaccard coefficient of these random subsets.
Why is this estimate an unbiased estimator of the Jaccard coefficient for 5;
and 5,?

Exercise 19.10 Explain why this estimator would be very difficult to use in
practice.

19.7 References and further reading

Bush (1945) foreshadowed the Web when he described an information man-
agement system that he called memex. Berners-Lee et al. (1992) describes
one of the earliest incarnations of the Web. Kumar et al. (2000) and Broder
et al. (2000) provide comprehensive studies of the Web as a graph. The use
of anchor text was first described in McBryan (1994). The taxonomy of web
queries in Section 19.4 is due to Broder (2002). The observation of the power
law with exponent 2.1 in Section 19.2.1 appeared in Kumar et al. (1999).
Chakrabarti (2002) is a good reference for many aspects of web search and
analysis.

The estimation of web search index sizes has a long history of devel-
opment covered by Bharat and Broder (1998), Lawrence and Giles (1998),
Rusmevichientong et al. (2001), Lawrence and Giles (1999), Henzinger et al.
(2000), Bar-Yossef and Gurevich (2006). The state of the art is Bar-Yossef and
Gurevich (2006), including several of the bias-removal techniques mentioned
at the end of Section 19.5. Shingling was introduced by Broder et al. (1997)
and used for detecting websites (rather than simply pages) that are identical
by Bharat et al. (2000).
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