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18Matrix decompositions and latent
semantic indexing

On page 113, we introduced the notion of a term-document matrix: an M × N
matrix C , each of whose rows represents a term and each of whose columns
represents a document in the collection. Even for a collection of modest size,
the term-document matrix C is likely to have several tens of thousands of
rows and columns. In Section 18.1.1, we first develop a class of operations
from linear algebra, known as matrix decomposition. In Section 18.2, we use a
special form of matrix decomposition to construct a low-rank approximation
to the term-document matrix. In Section 18.3 we examine the application
of such low-rank approximations to indexing and retrieving documents, a
technique referred to as latent semantic indexing. Although latent semantic in-
dexing has not been established as a significant force in scoring and ranking
for information retrieval (IR), it remains an intriguing approach to clustering
in a number of domains including for collections of text documents (Sec-
tion 16.6, page 343). Understanding its full potential remains an area of active
research.

Readers who do not require a refresher on linear algebra may skip Sec-
tion 18.1, although Example 18.1 is especially recommended as it highlights
a property of eigenvalues that we exploit later in the chapter.

18.1 Linear algebra review

We briefly review some necessary background in linear algebra. Let C be
an M × N matrix with real-valued entries; for a term–document matrix, all
entries are in fact non-negative. The rank of a matrix is the number of linearlyrank

independent rows (or columns) in it; thus, rank(C) ≤ min{M, N}. A square
r × r matrix all of whose off-diagonal entries are zero is called a diagonal
matrix; its rank is equal to the number of nonzero diagonal entries. If all r
diagonal entries of such a diagonal matrix are 1, it is called the identity matrix
of dimension r and represented by Ir .
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For a square M × M matrix C and a vector �x that is not all zeros, the values
of λ satisfying

C �x = λ�x(18.1)

are called the eigenvalues of C. The N-vector �x satisfying Equation (18.1) foreigenvalue

an eigenvalue λ is the corresponding right eigenvector. The eigenvector corre-
sponding to the eigenvalue of largest magnitude is called the principal eigen-
vector. In a similar fashion, the left eigenvectors of C are the M-vectors y such
that

�yT C = λ�yT .(18.2)

The number of nonzero eigenvalues of C is at most rank(C).
The eigenvalues of a matrix are found by solving the characteristic equation,

which is obtained by rewriting Equation (18.1) in the form (C − λIM)�x = 0.
The eigenvalues of C are then the solutions of |(C − λIM)| = 0, where |S| de-
notes the determinant of a square matrix S. The equation |(C − λIM)| = 0 is
an Mth-order polynomial equation in λ and can have at most M roots, which
are the eigenvalues of C . These eigenvalues can in general be complex, even
if all entries of C are real.

We now examine some further properties of eigenvalues and eigenvectors,
to set up the central idea of singular value decompositions in Section 18.2
below. First, we look at the relationship between matrix-vector multiplication
and eigenvalues.

✎ Example 18.1: Consider the matrix

S =

⎛⎜⎝ 30 0 0
0 20 0
0 0 1

⎞⎟⎠ .

Clearly, the matrix has rank 3, and has three nonzero eigenvalues λ1 = 30,
λ2 = 20, and λ3 = 1, with the three corresponding eigenvectors

�x1 =

⎛⎜⎝ 1
0
0

⎞⎟⎠ , �x2 =

⎛⎜⎝ 0
1
0

⎞⎟⎠ and �x3 =

⎛⎜⎝ 0
0
1

⎞⎟⎠ .

For each of the eigenvectors, multiplication by S acts as if we were multi-
plying the eigenvector by a multiple of the identity matrix; the multiple is
different for each eigenvector. Now, consider an arbitrary vector, such as

�v =

⎛⎜⎝ 2
4
6

⎞⎟⎠ . We can always express �v as a linear combination of the three
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eigenvectors of S; in the current example we have

�v =

⎛⎜⎝ 2
4
6

⎞⎟⎠ = 2 �x1 + 4 �x2 + 6 �x3.

Suppose we multiply �v by S:

S�v = S(2 �x1 + 4 �x2 + 6 �x3)

= 2S �x1 + 4S �x2 + 6S �x3

= 2λ1 �x1 + 4λ2 �x2 + 6λ3 �x3

= 60 �x1 + 80 �x2 + 6 �x3.(18.3)

Example 18.1 shows that even though �v is an arbitrary vector, the effect of
multiplication by S is determined by the eigenvalues and eigenvectors of S.
Furthermore, it is intuitively apparent from Equation (18.3) that the product
S�v is relatively unaffected by terms arising from the small eigenvalues of S;
in our example, because λ3 = 1, the contribution of the third term on the right
hand side of Equation (18.3) is small. In fact, if we were to completely ignore
the contribution in Equation (18.3) from the third eigenvector corresponding

to λ3 = 1, then the product S�v would be computed to be

⎛⎜⎝ 60
80
0

⎞⎟⎠ rather than

the correct product, which is

⎛⎜⎝ 60
80
6

⎞⎟⎠; these two vectors are relatively close to

each other by any of various metrics one could apply (such as the length of
their vector difference).

This suggests that the effect of small eigenvalues (and their eigenvectors)
on a matrix–vector product is small. We will carry forward this intuition
when studying matrix decompositions and low-rank approximations in Sec-
tion 18.2. Before doing so, we examine the eigenvectors and eigenvalues of
special forms of matrices that will be of particular interest to us.

For a symmetric matrix S, the eigenvectors corresponding to distinct eigen-
values are orthogonal. Further, if S is both real and symmetric, the eigenvalues
are all real.

✎ Example 18.2: Consider the real, symmetric matrix

S =
(

2 1
1 2

)
.(18.4)

From the characteristic equation |S − λI | = 0, we have the quadratic (2 −
λ)2 − 1 = 0, whose solutions yield the eigenvalues 3 and 1. The corre-

sponding eigenvectors

(
1

−1

)
and

(
1
1

)
are orthogonal.
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18.1.1 Matrix decompositions

In this section, we examine ways in which a square matrix can be factored into
the product of matrices derived from its eigenvectors; we refer to this process
as matrix decomposition. Matrix decompositions similar to the ones in this sec-matrix

decomposition tion forms the basis of our principal text-analysis technique in Section 18.3,
where we will look at decompositions of nonsquare term–document matri-
ces. The square decompositions in this section are simpler and can be treated
with sufficient mathematical rigor to help the reader to understand how such
decompositions work. The detailed mathematical derivation of the more
complex decompositions in Section 18.2 are beyond the scope of this book.

We begin by giving two theorems on the decomposition of a square ma-
trix into the product of three matrices of a special form. The first of these,
Theorem 18.1, gives the basic factorization of a square real-valued matrix
into three factors. The second, Theorem 18.2, applies to square symmetric
matrices and is the basis of the singular value decomposition described in
Theorem 18.3.

Theorem 18.1. (Matrix diagonalization theorem) Let S be a square real-valued
M × M matrix with M linearly independent eigenvectors. Then there exists an
eigen decompositioneigen

decomposition
S = U�U−1,(18.5)

where the columns of U are the eigenvectors of S and � is a diagonal matrix whose
diagonal entries are the eigenvalues of S in decreasing order⎛⎜⎜⎜⎝

λ1

λ2

· · ·
λM

⎞⎟⎟⎟⎠ , λi ≥ λi+1.(18.6)

If the eigenvalues are distinct, then this decomposition is unique.

To understand how Theorem 18.1 works, we note that U has the eigenvec-
tors of S as columns

U = ( �u1 �u2 · · · �uM) .(18.7)

Then we have

SU = S ( �u1 �u2 · · · �uM)

= (λ1 �u1 λ2 �u2 · · · λM �uM)

= ( �u1 �u2 · · · �uM)

⎛⎜⎜⎜⎝
λ1

λ2

· · ·
λM

⎞⎟⎟⎟⎠ .

Thus, we have SU = U�, or S = U�U−1.
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We next state a closely related decomposition of a symmetric square matrix
into the product of matrices derived from its eigenvectors. This will pave the
way for the development of our main tool for text analysis, the singular value
decomposition (Section 18.2).

Theorem 18.2. (Symmetric diagonalization theorem) Let S be a square, sym-
metric real-valued M × M matrix with M linearly independent eigenvectors. Then
there exists a symmetric diagonal decomposition

symmetric
diagonal

decomposition

S = Q�QT ,(18.8)

where the columns of Q are the orthogonal and normalized (unit length, real) eigen-
vectors of S, and � is the diagonal matrix whose entries are the eigenvalues of S.
Further, all entries of Q are real and we have Q−1 = QT .

We will build on this symmetric diagonal decomposition to build low-rank
approximations to term–document matrices.

? Exercise 18.1 What is the rank of the 3 × 3 diagonal matrix below?⎛⎜⎝ 1 1 0
0 1 1
1 2 1

⎞⎟⎠
Exercise 18.2 Show that λ = 2 is an eigenvalue of

C =
(

6 −2
4 0

)
.

Find the corresponding eigenvector.

Exercise 18.3 Compute the unique eigen decomposition of the 2 × 2 matrix
in (18.4).

18.2 Term–document matrices and singular value
decompositions

The decompositions we have been studying thus far apply to square matri-
ces. However, the matrix we are interested in is the M × N term–document
matrix C where (barring a rare coincidence) M �= N; furthermore, C is very
unlikely to be symmetric. To this end we first describe an extension of the
symmetric diagonal decomposition known as the singular value decomposi-singular

value
decomposition

tion. We then show in Section 18.3 how this can be used to construct an
approximate version of C . It is beyond the scope of this book to develop
a full treatment of the mathematics underlying singular value decomposi-
tions; following the statement of Theorem 18.3 we relate the singular value
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decomposition to the symmetric diagonal decompositions from Sec-symmetric
diagonal

decomposition
tion 18.1.1. Given C , let U be the M × M matrix whose columns are the or-
thogonal eigenvectors of CCT , and V be the N × N matrix whose columns
are the orthogonal eigenvectors of CT C . Denote by CT the transpose of a
matrix C .

Theorem 18.3. Let r be the rank of the M × N matrix C. Then, there is a singular-
value decomposition (SVD for short) of C of the formSVD

C = U�VT ,(18.9)

where

1. The eigenvalues λ1, . . . , λr of CCT are the same as the eigenvalues of CT C;
2. For 1 ≤ i ≤ r , let σi = √

λi , with λi ≥ λi+1. Then the M × N matrix � is com-
posed by setting �i i = σi for 1 ≤ i ≤ r , and zero otherwise.

The values σi are referred to as the singular values of C . It is instructive to
examine the relationship of Theorem 18.3 to Theorem 18.2; we do this rather
than derive the general proof of Theorem 18.3, which is beyond the scope of
this book.

By multiplying Equation (18.9) by its transposed version, we have

CCT = U�VT V�UT = U�2UT .(18.10)

Note now that in Equation (18.10), the left-hand side is a square symmetric
matrix real-valued matrix, and the right-hand side represents its symmetric
diagonal decomposition as in Theorem 18.2. What does the left-hand side
CCT represent? It is a square matrix with a row and a column correspond-
ing to each of the M terms. The entry (i , j) in the matrix is a measure of the
overlap between the ith and j th terms, based on their co-occurrence in docu-
ments. The precise mathematical meaning depends on the manner in which
C is constructed based on term weighting. Consider the case where C is the
term–document incidence matrix of page 3, illustrated in Figure 1.1. Then
the entry (i, j) in CCT is the number of documents in which both term i and
term j occur.

When writing down the numerical values of the SVD, it is conventional
to represent � as an r × r matrix with the singular values on the diagonals,
because all its entries outside this submatrix are zeros. Accordingly, it is con-
ventional to omit the rightmost M − r columns of U corresponding to these
omitted rows of �; likewise the rightmost N − r columns of V are omitted
because they correspond in VT to the rows that will be multiplied by the
N − r columns of zeros in �. This written form of the SVD is sometimes
known as the reduced SVD or truncated SVD and we will encounter it againreduced SVD

truncated
SVD

in Exercise 18.9. Henceforth, our numerical examples and exercises will use
this reduced form.
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Figure 18.1 Illustration of the SVD. In this schematic illustration of (18.9), we see two cases illus-
trated. In the top half of the figure, we have a matrix C for which M > N. The lower half illustrates
the case M < N.

✎ Example 18.3: We now illustrate the singular-value decomposition of a
4 × 2 matrix of rank 2; the singular values are �11 = 2.236 and �22 = 1.

C =

⎛⎜⎜⎜⎝
1 −1
0 1
1 0

−1 1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−0.632 0.000
0.316 −0.707

−0.316 −0.707
0.632 0.000

⎞⎟⎟⎟⎠
(

2.236 0.000
0.000 1.000

) (
−0.707 0.707
−0.707 −0.707

)
.(18.11)

As with the matrix decompositions defined in Section 18.1.1, the singu-
lar value decomposition of a matrix can be computed by a variety of algo-
rithms, many of which have been publicly available software implementa-
tions; pointers to these are given in Section 18.5.

? Exercise 18.4 Let

C =

⎛⎜⎝ 1 1
0 1
1 0

⎞⎟⎠(18.12)

be the term–document incidence matrix for a collection. Compute the co-
occurrence matrix CCT . What is the interpretation of the diagonal entries
of CCT when C is a term–document incidence matrix?

Exercise 18.5 Verify that the SVD of the matrix in Equation (18.12) is

U =
⎛⎝−0.816 0.000

−0.408 −0.707
−0.408 0.707

⎞⎠ , � =
(

1.732 0.000
0.000 1.000

)
and VT =

(−0.707 −0.707
0.707 −0.707

)
,(18.13)

by verifying all of the properties in the statement of Theorem 18.3.

Exercise 18.6 Suppose that C is a term–document incidence matrix. What do
the entries of CT C represent?
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Exercise 18.7 Let

C =

⎛⎜⎝ 0 2 1
0 3 0
2 1 0

⎞⎟⎠(18.14)

be a term–document matrix whose entries are term frequencies; thus term
1 occurs twice in document 2 and once in document 3. Compute CCT ; ob-
serve that its entries are largest where two terms have their most frequent
occurrences together in the same document.

18.3 Low-rank approximations

We next state a matrix approximation problem that at first seems to have
little to do with information retrieval. We describe a solution to this matrix
problem using SVD, then develop its application to IR.

Given an M × N matrix C and a positive integer k, we wish to find an
M × N matrix Ck of rank at most k, so as to minimize the Frobenius norm ofFrobenius

norm the matrix difference X = C − Ck , defined to be

||X||F =
√√√√ M∑

i=1

N∑
j=1

X2
i j .(18.15)

Thus, the Frobenius norm of X measures the discrepancy between Ck and C ;
our goal is to find a matrix Ck that minimizes this discrepancy, while con-
straining Ck to have rank at most k. If r is the rank of C , clearly Cr = C and
the Frobenius norm of the discrepancy is zero in this case. When k is far
smaller than r , we refer to Ck as a low-rank approximation.low-rank

approximation The SVD can be used to solve the low-rank matrix approximation prob-
lem. We then derive from it an application to approximating term–document
matrices. We invoke the following three-step procedure to this end:

1. Given C , construct its SVD in the form shown in (18.9); thus, C = U�VT .
2. Derive from � the matrix �k formed by replacing by zeros the r − k small-

est singular values on the diagonal of �.
3. Compute and output Ck = U�k VT as the rank-k approximation to C .

The rank of Ck is at most k: This follows from the fact that �k has at most
k nonzero values. Next, we recall the intuition of Example 18.1: The effect
of small eigenvalues on matrix products is small. Thus, it seems plausible
that replacing these small eigenvalues by zero will not substantially alter the
product, leaving it “close” to C . The following theorem due to Eckart and
Young tells us that, in fact, this procedure yields the matrix of rank k with
the lowest possible Frobenius error.
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Ck = U �k VT
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Figure 18.2 Illustration of low rank approximation using the SVD. The dashed boxes indicate
the matrix entries affected by “zeroing out” the smallest singular values.

Theorem 18.4.

min
Z| rank(Z)=k

||C − Z||F = ||C − Ck ||F =
√√√√ r∑

i=k+1

σ 2
i .(18.16)

Recalling that the singular values are in decreasing order σ1 ≥ σ2 ≥ · · ·,
we learn from Theorem 18.4 that Ck is the best rank-k approximation to C ,
incurring an error (measured by the Frobenius norm of C − Ck) equal to
σk+1. Thus, the larger k is, the smaller this error (and in particular, for k = r ,
the error is zero since �r = �; provided r < M, N, then σr+1 = 0 and thus
Cr = C).

To derive further insight into why the process of truncating the smallest
r − k singular values in � helps to generate a rank-k approximation of low
error, we examine the form of Ck :

Ck = U�k VT(18.17)

= U

⎛⎜⎜⎜⎜⎜⎝
σ1 0 0 0 0
0 · · · 0 0 0
0 0 σk 0 0
0 0 0 0 0
0 0 0 0 · · ·

⎞⎟⎟⎟⎟⎟⎠ VT(18.18)

=
k∑

i=1

σi �ui �vT
i ,(18.19)

where �ui and �vi are the ith columns of U and V, respectively. Thus, �ui �vT
i is

a rank-1 matrix, so that we have just expressed Ck as the sum of k rank-1
matrices each weighted by a singular value. As i increases, the contribution
of the rank-1 matrix �ui �vT

i is weighted by a sequence of shrinking singular
values σi .

? Exercise 18.8 Compute a rank-1 approximation C1 to the matrix C in Exam-
ple 18.12, using the SVD as in Exercise 18.13. What is the Frobenius norm
of the error of this approximation?

Exercise 18.9 Consider now the computation in Exercise 18.8. Following the
schematic in Figure 18.2, notice that for a rank-1 approximation we have
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σ1 being a scalar. Denote by U1 the first column of U and by V1 the first
column of V. Show that the rank-1 approximation to C can then be written
as U1σ1VT

1 = σ1U1VT
1 .

Exercise 18.10 Exercise 18.9 can be generalized to rank k approximations: We
let U ′

k and V′
k denote the “reduced” matrices formed by retaining only the

first k columns of U and V, respectively. Thus, U ′
k is an M × k matrix while

V′T
k is a k × N matrix. Then, we have

Ck = U ′
k�

′
k V′T

k ,(18.20)

where �′
k is the square k × k submatrix of �k with the singular values

σ1, . . . , σk on the diagonal. The primary advantage of using (18.20) is to
eliminate a lot of redundant columns of zeros in U and V, thereby explic-
itly eliminating multiplication by columns that do not affect the low-rank
approximation; this version of the SVD is sometimes known as the reduced
SVD or truncated SVD and is a computationally simpler representation
from which to compute the low rank approximation.
For the matrix C in Example 18.3, write down both �2 and �′

2.

18.4 Latent semantic indexing

We now discuss the approximation of a term-document matrix C by one
of lower rank using the SVD. The low-rank approximation to C yields a
new representation for each document in the collection. We will cast queries
into this low-rank representation as well, enabling us to compute query–
document similarity scores in this low-rank representation. This process is
known as latent semantic indexing (generally abbreviated LSI).latent

semantic
indexing

But first, we motivate such an approximation. Recall the vector space rep-
resentation of documents and queries introduced in Chapter 6. This vector
space representation enjoys a number of advantages including the uniform
treatment of queries and documents as vectors, the induced score computa-
tion based on cosine similarity, the ability to weight different terms differ-
ently, and its extension beyond document retrieval to such applications as
clustering and classification. The vector space representation suffers, how-
ever, from its inability to cope with two classic problems arising in natural
languages: synonymy and polysemy. Synonymy refers to a case where two dif-
ferent words (say, car and automobile) have the same meaning. Because the
vector space representation fails to capture the relationship between synony-
mous terms such as car and automobile – according each a separate dimension
in the vector space. Consequently, the computed similarity �q · �d between a
query �q (say, car) and a document �d containing both car and automobile un-
derestimates the true similarity that a user would perceive. Polysemy on the
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other hand refers to the case where a term such as charge has multiple mean-
ings, so that the computed similarity �q · �d overestimates the similarity that a
user would perceive. Could we use the co-occurrences of terms (whether, for
instance, charge occurs in a document containing steed versus in a document
containing electron) to capture the latent semantic associations of terms and
alleviate these problems?

Even for a collection of modest size, the term–document matrix C is likely
to have several tens of thousand of rows and columns, and a rank in the
tens of thousands as well. In LSI (sometimes referred to as latent semanticLSA

analysis (LSA)), we use the SVD to construct a low-rank approximation Ck

to the term–document matrix, for a value of k that is far smaller than the
original rank of C . In the experimental work cited later in this section, k is
generally chosen to be in the low hundreds. We thus map each row/column
(respectively corresponding to a term/document) to a k-dimensional space;
this space is defined by the k principal eigenvectors (corresponding to the
largest eigenvalues) of CCT and CT C . Note that the matrix Ck is itself still an
M × N matrix, irrespective of k.

Next, we use the new k-dimensional LSI representation as we did the
original representation – to compute similarities between vectors. A query
vector �q is mapped into its representation in the LSI space by the transfor-
mation

�qk = �−1
k UT

k �q .(18.21)

Now, we may use cosine similarities as in Chapter 6 to compute the similarity
between a query and a document, between two documents, or between two
terms. Note especially that Equation (18.21) does not in any way depend
on �q being a query; it is simply a vector in the space of terms. This means
that if we have an LSI representation of a collection of documents, a new
document not in the collection can be “folded in” to this representation using
Equation (18.21). This allows us to incrementally add documents to an LSI
representation. Of course, such incremental addition fails to capture the co-
occurrences of the newly added documents (and even ignores any new terms
they contain). As such, the quality of the LSI representation will degrade as
more documents are added and will eventually require a recomputation of
the LSI representation.

The fidelity of the approximation of Ck to C leads us to hope that the rel-
ative values of cosine similarities are preserved: if a query is close to a doc-
ument in the original space, it remains relatively close in the k-dimensional
space. But this in itself is not sufficiently interesting, especially given that
the sparse query vector �q turns into a dense query vector �qk in the low-
dimensional space. This has a significant computational cost, when com-
pared with the cost of processing �q in its native form.
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✎ Example 18.4: Consider the term-document matrix C =

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0
trip 0 0 0 1 0 1

Its SVD is the product of three matrices as below. First we have U, which
in this example is:

1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
voyage −0.70 0.35 0.15 −0.58 0.16
trip −0.26 0.65 −0.41 0.58 −0.09

When applying the SVD to a term–document matrix, U is known as the
SVD term matrix. The singular values are � =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Finally we have VT , which in the context of a term-document matrix is
known as the SVD document matrix:

d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

By “zeroing out” all but the two largest singular values of �, we obtain
�2 =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00



 

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

18.4 Latent semantic indexing 381

From this, we compute C2 =
d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Notice that the low-rank approximation, unlike the original matrix C ,
can have negative entries.

Examination of C2 and �2 in Example 18.4 shows that the last three rows
of each of these matrices are populated entirely by zeros. This suggests that
the SVD product U�VT in Equation (18.18) can be carried out with only two
rows in the representations of �2 and VT ; we may then replace these matrices
by their truncated versions �′

2 and (V′)T . For instance, the truncated SVD
document matrix (V′)T in this example is:

d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41

Figure 18.3 illustrates the documents in (V′)T in two dimensions. Note also
that C2 is dense relative to C .

We may in general view the low-rank approximation of C by Ck as a con-
strained optimization problem, subject to the constraint that Ck have rank at

−0.5−1.0−1.5

0.5

1.0

−0.5

−1.0

dim 2

dim 1

×
d1

×
d2

× d3

×

d4

×
d5

× d6

Figure 18.3 The documents of Example 18.4 reduced to two dimensions in (V′)T .
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most k, we seek a representation of the terms and documents comprising C
with low Frobenius norm for the error C − Ck . When forced to squeeze the
terms/documents down to a k-dimensional space, the SVD should bring to-
gether terms with similar co-occurrences. This intuition suggests, then, that
not only should retrieval quality not suffer too much from the dimension
reduction, but in fact may improve.

Dumais (1993) and Dumais (1995) conducted experiments with LSI on
TREC documents and tasks, using the commonly used Lanczos algorithm to
compute the SVD. At the time of their work in the early 1990s, the LSI com-
putation on tens of thousands of documents took approximately one day on
one machine. In these experiments, they achieved precision at or above that
of the median TREC participant. In about 20% of TREC topics, their system
was the top scorer, and reportedly slightly better on average than standard
vector spaces for LSI at about 350 dimensions. Here are some conclusions on
LSI first suggested by their work, and subsequently verified by many other
experiments.

� The computational cost of the SVD is significant; at the time of this writing,
we know of no successful experiment with over one million documents.
This has been the biggest obstacle to the widespread adoption to LSI. One
approach to this obstacle is to build the LSI representation on a randomly
sampled subset of the documents in the collection, following which the
remaining documents are “folded in” as detailed with Equation (18.21).� As we reduce k, recall tends to increase, as expected.� Most surprisingly, a value of k in the low hundreds can actually increase
precision on some query benchmarks. This suggests that, for a suitable
value of k, LSI addresses some of the challenges of synonymy.� LSI works best in applications where there is little overlap between queries
and documents.

The experiments also documented some modes where LSI failed to match
the effectiveness of more traditional indexes and score computations. Most
notably (and perhaps obviously), LSI shares two basic drawbacks of vector
space retrieval: There is no good way of expressing negations (find docu-
ments that contain german but not shepherd), and no way of enforcing Boo-
lean conditions.

LSI can be viewed as soft clustering by interpreting each dimension of thesoft
clustering reduced space as a cluster and the value that a document has on that dimen-

sion as its fractional membership in that cluster.

? Exercise 18.11 Assume you have a set of documents each of which is in ei-
ther English or in Spanish. The collection is given in Figure 18.4.

Figure 18.5 gives a glossary relating the Spanish and English words
above for your own information. This glossary is NOT available to the
retrieval system:
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DocID document text
1 hello
2 open house
3 mi casa
4 hola Profesor
5 hola y bienvenido
6 hello and welcome

Figure 18.4 Documents for Exercise 18.11.

Spanish English
mi my
casa house
hola hello
profesor professor
y and
bienvenido welcome

Figure 18.5 Glossary for Exercise 18.11.

1. Construct the appropriate term–document matrix C to use for a collec-
tion consisting of these documents. For simplicity, use raw term frequen-
cies rather than normalized tf-idf weights. Make sure to clearly label the
dimensions of your matrix.

2. Write down the matrices U2, �′
2 and V2 and from these derive the rank

2 approximation C2.
3. State succinctly what the (i , j) entry in the matrix CT C represents.
4. State succinctly what the (i , j) entry in the matrix CT

2 C2 represents, and
why it differs from that in CT C .

18.5 References and further reading

Strang (1986) provides an excellent introductory overview of matrix decom-
positions including the singular value decomposition. Theorem 18.4 is due
to Eckart and Young (1936). The connection between IR and low-rank ap-
proximations of the term – document matrix was introduced in Deerwester
et al. (1990), with a subsequent survey of results in Berry et al. (1995). Dumais
(1993) and Dumais (1995) describe experiments on TREC benchmarks giving
evidence that at least on some benchmarks, LSI can produce better precision
and recall than standard vector-space retrieval. www.cs.utk.edu/˜berry/lsi++/

and http://lsi.argreenhouse.com/lsi/LSIpapers.html offer comprehensive pointers
to the literature and software of LSI. Schütze and Silverstein (1997) eval-
uate LSI and truncated representations of centroids for efficient K -means
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clustering (Section 16.4). Bast and Majumdar (2005) detail the role of the re-
duced dimension k in LSI and how different pairs of terms get coalesced
together at differing values of k. Applications of LSI to cross-language infor-cross-

language
information

retrieval

mation retrieval (where documents in two or more different languages are in-
dexed, and a query posed in one language is expected to retrieve documents
in other languages) are developed in Berry and Young (1995) and Littman
et al. (1998). LSI (referred to as LSA in more general settings) has been ap-
plied to host of other problems in computer science ranging from memory
modeling to computer vision.

Hofmann (1999a, 1999b) provides an initial probabilistic extension of the
basic LSI technique. A more satisfactory formal basis for a probabilistic latent
variable model for dimensionality reduction is the Latent Dirichlet Alloca-
tion (LDA) model (Blei et al. 2003), which is generative and assigns probabil-
ities to documents outside of the training set. This model is extended to a hi-
erarchical clustering by Rosen-Zvi et al. (2004). Wei and Croft (2006) present
the first large scale evaluation of LDA, finding it to significantly outperform
the query likelihood model of Section 12.2 (page 223), but to not perform
quite as well as the relevance model mentioned in Section 12.4 (page 230) –
but the latter does additional per-query processing unlike LDA. Teh et al.
(2006) generalize further by presenting Hierarchical Dirichlet processes, a
probabilistic model that allows a group (for us, a document) to be drawn
from an infinite mixture of latent topics, while still allowing these topics to
be shared across documents.


