

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17Hierarchical clustering

Flat clustering is efficient and conceptually simple, but as we saw in Chap-
ter 16 it has a number of drawbacks. The algorithms introduced in Chap-
ter 16 return a flat unstructured set of clusters, require a prespecified number
of clusters as input and are nondeterministic. Hierarchical clustering (or hi-hierarchical

clustering erarchic clustering) outputs a hierarchy, a structure that is more informative
than the unstructured set of clusters returned by flat clustering.1 Hierarchical
clustering does not require us to prespecify the number of clusters and most
hierarchical algorithms that have been used in information retrieval (IR) are
deterministic. These advantages of hierarchical clustering come at the cost of
lower efficiency. The most common hierarchical clustering algorithms have a
complexity that is at least quadratic in the number of documents compared
to the linear complexity of K -means and EM (cf. Section 16.4, page 335).

This chapter first introduces agglomerative hierarchical clustering (Sec-
tion 17.1) and presents four different agglomerative algorithms, in Sections
17.2 through 17.4, which differ in the similarity measures they employ:
single-link, complete-link, group-average, and centroid similarity. We then
discuss the optimality conditions of hierarchical clustering in Section 17.5.
Section 17.6 introduces top-down (or divisive) hierarchical clustering. Sec-
tion 17.7 looks at labeling clusters automatically, a problem that must be
solved whenever humans interact with the output of clustering. We discuss
implementation issues in Section 17.8. Section 17.9 provides pointers to fur-
ther reading, including references to soft hierarchical clustering, which we
do not cover in this book.

There are few differences between the applications of flat and hierarchi-
cal clustering in information retrieval. In particular, hierarchical clustering
is appropriate for any of the applications shown in Table 16.1 (page 323;
see also Section 16.6, page 343). In fact, the example we gave for collection

1 In this chapter, we only consider hierarchies that are binary trees as the one shown in Fig-
ure 17.1 – but hierarchical clustering can be easily extended to other types of trees.

346

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.1 Hierarchical agglomerative clustering 347

clustering is hierarchical. In general, we select flat clustering when efficiency
is important and hierarchical clustering when one of the potential problems
of flat clustering (not enough structure, predetermined number of clusters,
nondeterminism) is a concern. In addition, many researchers believe that hi-
erarchical clustering produces better clusters than flat clustering. However,
there is no consensus on this issue (see references in Section 17.9).

17.1 Hierarchical agglomerative clustering

Hierarchical clustering algorithms are either top-down or bottom-up.
Bottom-up algorithms treat each document as a singleton cluster at the out-
set and then successively merge (or agglomerate) pairs of clusters until all
clusters have been merged into a single cluster that contains all documents.
Bottom-up hierarchical clustering is therefore called hierarchical agglomera-hierarchical

agglomerative
clustering

tive clustering or HAC. Top-down clustering requires a method for splitting

(HAC)
a cluster. It proceeds by splitting clusters recursively until individual docu-
ments are reached. See Section 17.6. HAC is more frequently used in IR than
top-down clustering and is the main subject of this chapter.

Before looking at specific similarity measures used in HAC in Sections 17.2
through 17.4, we first introduce a method for depicting hierarchical cluster-
ings graphically, discuss a few key properties of HACs and present a simple
algorithm for computing an HAC.

An HAC clustering is typically visualized as a dendrogram as shown indendrogram

Figure 17.1. Each merge is represented by a horizontal line. The y-coordinate
of the horizontal line is the similarity of the two clusters that were merged,
where documents are viewed as singleton clusters. We call this similarity the
combination similarity of the merged cluster. For example, the combinationcombination

similarity similarity of the cluster consisting of Lloyd’s CEO questioned and Lloyd’s chief /
U.S. grilling in Figure 17.1 is ≈ 0.56. We define the combination similarity of
a singleton cluster as its document’s self-similarity (which is 1.0 for cosine
similarity).

By moving up from the bottom layer to the top node, a dendrogram al-
lows us to reconstruct the history of merges that resulted in the depicted
clustering. For example, we see that the two documents entitled War hero
Colin Powell were merged first in Figure 17.1 and that the last merge added
Ag trade reform to a cluster consisting of the other twenty-nine documents.

A fundamental assumption in HAC is that the merge operation is mono-monotonicity

tonic. Monotonic means that if s1, s2, . . . , sK−1 are the combination similarities
of the successive merges of an HAC, then s1 ≥ s2 ≥ . . . ≥ sK−1 holds. A non-
monotonic hierarchical clustering contains at least one inversion si < si+1 andinversion

contradicts the fundamental assumption that we chose the best merge avail-
able at each step. We will see an example of an inversion in Figure 17.12.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

348 Hierarchical clustering

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

A
g

tr
ad

e
re

fo
rm

.
B

ac
kt

os
ch

oo
l s

pe
nd

in
g

is
 u

p
Ll

oy
d’

s
C

E
O

 q
ue

st
io

ne
d

Ll
oy

d’
s

ch
ie

f /
 U

.S
. g

ril
lin

g
V

ia
g

st
ay

s
po

si
tiv

e
C

hr
ys

le
r

/ L
at

in
 A

m
er

ic
a

O
hi

o
B

lu
e

C
ro

ss
Ja

pa
ne

se
 p

rim
e

m
in

is
te

r
/ M

ex
ic

o
C

om
pu

S
er

ve
 r

ep
or

ts
 lo

ss
S

pr
in

t /
 In

te
rn

et
 a

cc
es

s
se

rv
ic

e
P

la
ne

t H
ol

ly
w

oo
d

T
ro

ca
de

ro
: t

rip
lin

g
of

 r
ev

en
ue

s
G

er
m

an
 u

ni
on

s
sp

lit
W

ar
 h

er
o

C
ol

in
 P

ow
el

l
W

ar
 h

er
o

C
ol

in
 P

ow
el

l
O

il
pr

ic
es

 s
lip

C
ha

in
s

m
ay

 r
ai

se
 p

ric
es

C
lin

to
n

si
gn

s
la

w
La

w
su

it
ag

ai
ns

t t
ob

ac
co

 c
om

pa
ni

es
su

its
 a

ga
in

st
 to

ba
cc

o
fir

m
s

In
di

an
a

to
ba

cc
o

la
w

su
it

M
os

t a
ct

iv
e

st
oc

ks
M

ex
ic

an
 m

ar
ke

ts
H

og
 p

ric
es

 tu
m

bl
e

N
Y

S
E

 c
lo

si
ng

 a
ve

ra
ge

s
B

rit
is

h
F

T
S

E
 in

de
x

F
ed

 h
ol

ds
 in

te
re

st
 r

at
es

 s
te

ad
y

F
ed

 to
 k

ee
p

in
te

re
st

 r
at

es
 s

te
ad

y
F

ed
 k

ee
ps

 in
te

re
st

 r
at

es
 s

te
ad

y
F

ed
 k

ee
ps

 in
te

re
st

 r
at

es
 s

te
ad

y

Figure 17.1 A dendrogram of a single-link clustering of thirty documents from Reuters-RCV1.
Two possible cuts of the dendrogram are shown: at 0.4 into twenty-four clusters and at 0.1 into
twelve clusters.

Hierarchical clustering does not require a prespecified number of clusters.
However, in some applications we want a partition of disjoint clusters just as
in flat clustering. In those cases, the hierarchy needs to be cut at some point.
A number of criteria can be used to determine the cutting point:

� Cut at a prespecified level of similarity. For example, we cut the dendro-
gram at 0.4 if we want clusters with a minimum combination similarity of
0.4. In Figure 17.1, cutting the diagram at y = 0.4 yields twenty-four clus-
ters (grouping only documents with high similarity together) and cutting
it at y = 0.1 yields twelve clusters (one large financial news cluster and
eleven smaller clusters).� Cut the dendrogram where the gap between two successive combination
similarities is largest. Such large gaps arguably indicate “natural” clus-
terings. Adding one more cluster decreases the quality of the clustering
significantly, so cutting before this steep decrease occurs is desirable. This
strategy is analogous to looking for the knee in the K -means graph in Fig-
ure 16.8 (page 337).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.1 Hierarchical agglomerative clustering 349

SimpleHAC(d1, . . . , dN)
1 for n ← 1 to N
2 do for i ← 1 to N
3 do C[n][i] ← Sim(dn, di)
4 I [n] ← 1 (keeps track of active clusters)
5 A ← [] (collects clustering as a sequence of merges)
6 for k ← 1 to N − 1
7 do 〈i, m〉 ← arg max{〈i,m〉:i �=m∧I [i]=1∧I [m]=1} C[i][m]
8 A.Append(〈i, m〉) (store merge)
9 for j ← 1 to N

10 do C[i][j] ← Sim(i, m, j)
11 C[j][i] ← Sim(i, m, j)
12 I [m] ← 0 (deactivate cluster)
13 return A

Figure 17.2 A simple, but inefficient HAC algorithm.

� Apply Equation (16.11) (page 337):

K = arg min
K ′

[RSS(K ′) + λK ′]

where K ′ refers to the cut of the hierarchy that results in K ′ clusters, RSS is
the residual sum of squares and λ is a penalty for each additional cluster.
Instead of RSS, another measure of distortion can be used.� As in flat clustering, we can also prespecify the number of clusters K and
select the cutting point that produces K clusters.

A simple, naive HAC algorithm is shown in Figure 17.2. We first compute
the N × N similarity matrix C . The algorithm then executes N − 1 steps of
merging the currently most similar clusters. In each iteration, the two most
similar clusters are merged and the rows and columns of the merged cluster i
in C are updated.2 The clustering is stored as a list of merges in A. I indicates
which clusters are still available to be merged. The function Sim(i, m, j) com-
putes the similarity of cluster j with the merge of clusters i and m. For some
HAC algorithms, Sim(i, m, j) is simply a function of C[j][i] and C[j][m], for
example, the maximum of these two values for single link.

We will now refine this algorithm for the different similarity measures
of single-link and complete-link clustering (Section 17.2) and group-average
and centroid clustering (Sections 17.3 and 17.4). The merge criteria of these
four variants of HAC are shown in Figure 17.3.

2 We assume that we use a deterministic method for breaking ties, such as always choose the
merge that is the first cluster with respect to a total ordering of the subsets of the document
set D.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

350 Hierarchical clustering

0 1 2 3 4 5 6 7
0

1

2

3

4

(a) single link: maximum similarity

0 1 2 3 4 5 6 7
0

1

2

3

4

(b) complete link: minimum similarity

0 1 2 3 4 5 6 7
0

1

2

3

4

(c) centroid: average inter-similarity

0 1 2 3 4 5 6 7
0

1

2

3

4

(d) group-average: average of all similarities

Figure 17.3 The different notions of cluster similarity used by the four HAC algorithms. An
inter-similarity is a similarity between two documents from different clusters.

17.2 Single-link and complete-link clustering

In single-link clustering or single-linkage clustering, the similarity of two clus-single-link
clustering ters is the similarity of their most similar members (see Figure 17.3, (a)).3 This

single-link merge criterion is local. We pay attention solely to the area where
the two clusters come closest to each other. Other, more distant parts of the
cluster and the clusters’ overall structure are not taken into account.

In complete-link clustering or complete-linkage clustering, the similarity of twocomplete-
link

clustering
clusters is the similarity of their most dissimilar members (see Figure 17.3, (b)).
This is equivalent to choosing the cluster pair whose merge has the smallest
diameter. This complete-link merge criterion is nonlocal; the entire structure
of the clustering can influence merge decisions. This results in a preference
for compact clusters with small diameters over long, straggly clusters, but
also causes sensitivity to outliers. A single document far from the center can
increase diameters of candidate merge clusters dramatically and completely
change the final clustering.

Figure 17.4 depicts a single-link and a complete-link clustering of eight
documents. The first four steps, each producing a cluster consisting of
a pair of two documents, are identical. Then single-link clustering joins
the upper two pairs (and after that the lower two pairs) because on the

3 Throughout this chapter, we equate similarity with proximity in 2D depictions of clustering.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.2 Single-link and complete-link clustering 351

0 1 2 3 4
0

1

2

3

×

d5

×

d6

×

d7

×

d8

×

d1

×

d2

×

d3

×

d4

0 1 2 3 4
0

1

2

3

×

d5

×

d6

×

d7

×

d8

×

d1

×

d2

×

d3

×

d4

Figure 17.4 A single-link (left) and complete-link (right) clustering of eight documents. The el-
lipses correspond to successive clustering stages. Left: The single-link similarity of the two upper
two-point clusters is the similarity of d2 and d3 (solid line), which is greater than the single-link
similarity of the two left two-point clusters (dashed line). Right: The complete-link similarity of the
two upper two-point clusters is the similarity of d1 and d4 (dashed line), which is smaller than the
complete-link similarity of the two left two-point clusters (solid line).

maximum-similarity definition of cluster similarity, those two clusters are
closest. Complete-link clustering joins the left two pairs (and then the right
two pairs) because those are the closest pairs according to the minimum-
similarity definition of cluster similarity.4

Figure 17.1 is an example of a single-link clustering of a set of documents
and Figure 17.5 is the complete-link clustering of the same set. When cutting
the last merge in Figure 17.5, we obtain two clusters of similar size (doc-
uments 1–16, from NYSE closing averages to Lloyd’s chief / U.S. grilling, and
documents 17–30, from Ohio Blue Cross to Clinton signs law). There is no cut
of the dendrogram in Figure 17.1 that would give us an equally balanced
clustering.

Both single-link and complete-link clustering have graph-theoretic inter-
pretations. Define sk to be the combination similarity of the two clusters
merged in step k, and G(sk) the graph that links all data points with a similar-
ity of at least sk . Then the clusters after step k in single-link clustering are the
connected components of G(sk) and the clusters after step k in complete-link
clustering are maximal cliques of G(sk). A connected component is a maximalconnected

component set of connected points such that there is a path connecting each pair. A clique

clique is a set of points that are completely linked with each other.
These graph-theoretic interpretations motivate the terms single-link and

complete-link clustering. Single-link clusters at step k are maximal sets of
points that are linked via at least one link (a single link) of similarity s ≥ sk ;
complete-link clusters at step k are maximal sets of points that are completely
linked with each other via links of similarity s ≥ sk .

Single-link and complete-link clustering reduce the assessment of cluster
quality to a single similarity between a pair of documents: the two most
similar documents in single-link clustering and the two most dissimilar

4 If you are bothered by the possibility of ties, assume that d1 has coordinates (1 + ε, 3 − ε) and
that all other points have integer coordinates.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

352 Hierarchical clustering

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

N
Y

S
E

 c
lo

si
ng

 a
ve

ra
ge

s
H

og
 p

ric
es

 tu
m

bl
e

O
il

pr
ic

es
 s

lip
A

g
tr

ad
e

re
fo

rm
.

C
hr

ys
le

r
/ L

at
in

 A
m

er
ic

a
Ja

pa
ne

se
 p

rim
e

m
in

is
te

r
/ M

ex
ic

o
F

ed
 h

ol
ds

 in
te

re
st

 r
at

es
 s

te
ad

y
F

ed
 to

 k
ee

p
in

te
re

st
 r

at
es

 s
te

ad
y

F
ed

 k
ee

ps
 in

te
re

st
 r

at
es

 s
te

ad
y

F
ed

 k
ee

ps
 in

te
re

st
 r

at
es

 s
te

ad
y

M
ex

ic
an

 m
ar

ke
ts

B
rit

is
h

F
T

S
E

 in
de

x
W

ar
 h

er
o

C
ol

in
 P

ow
el

l
W

ar
 h

er
o

C
ol

in
 P

ow
el

l
Ll

oy
d’

s
C

E
O

 q
ue

st
io

ne
d

Ll
oy

d’
s

ch
ie

f /
 U

.S
. g

ril
lin

g
O

hi
o

B
lu

e
C

ro
ss

La
w

su
it

ag
ai

ns
t t

ob
ac

co
 c

om
pa

ni
es

su
its

 a
ga

in
st

 to
ba

cc
o

fir
m

s
In

di
an

a
to

ba
cc

o
la

w
su

it
V

ia
g

st
ay

s
po

si
tiv

e
M

os
t a

ct
iv

e
st

oc
ks

C
om

pu
S

er
ve

 r
ep

or
ts

 lo
ss

S
pr

in
t /

 In
te

rn
et

 a
cc

es
s

se
rv

ic
e

P
la

ne
t H

ol
ly

w
oo

d
T

ro
ca

de
ro

: t
rip

lin
g

of
 r

ev
en

ue
s

B
ac

kt
os

ch
oo

l s
pe

nd
in

g
is

 u
p

G
er

m
an

 u
ni

on
s

sp
lit

C
ha

in
s

m
ay

 r
ai

se
 p

ric
es

C
lin

to
n

si
gn

s
la

w
Figure 17.5 A dendrogram of a complete-link clustering. The same thirty documents were clus-
tered with single-link clustering in Figure 17.1.

documents in complete-link clustering. A measurement based on one pair
cannot fully reflect the distribution of documents in a cluster. It is there-
fore not surprising that both algorithms often produce undesirable clus-
ters. Single-link clustering can produce straggling clusters as shown in Fig-
ure 17.6. Because the merge criterion is strictly local, a chain of points can
be extended for long distances without regard to the overall shape of the
emerging cluster. This effect is called chaining.chaining

The chaining effect is also apparent in Figure 17.1. The last eleven
merges of the single-link clustering (those above the 0.1 line) add on single

0 1 2 3 4 5 6
0
1
2

× × × × × ×

× × × × × ×

Figure 17.6 Chaining in single-link clustering. The local criterion in single-link clustering can
cause undesirable elongated clusters.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.2 Single-link and complete-link clustering 353

0 1 2 3 4 5 6 7
0
1 ×

d1

×

d2

×

d3

×

d4

×

d5

Figure 17.7 Outliers in complete-link clustering. The five documents have the x-coordinates 1 +
2ε, 4, 5 + 2ε, 6 and 7 − ε. Complete-link clustering creates the two clusters shown as ellipses. The
most intuitive two-cluster clustering is {{d1}, {d2, d3, d4, d5}}, but in complete-link clustering, the
outlier d1 splits {d2, d3, d4, d5} as shown.

documents or pairs of documents, corresponding to a chain. The complete-
link clustering in Figure 17.5 avoids this problem. Documents are split into
two groups of roughly equal size when we cut the dendrogram at the last
merge. In general, this is a more useful organization of the data than a clus-
tering with chains.

However, complete-link clustering has a different problem. It pays too
much attention to outliers, points that do not fit well into the global structure
of the cluster. In the example in Figure 17.7 the four documents d2, d3, d4, d5

are split because of the outlier d1 at the left edge (Exercise 17.1). Complete-
link clustering does not find the most intuitive cluster structure in this
example.

17.2.1 Time complexity

The complexity of the naive HAC algorithm in Figure 17.2 is �(N3) because
we exhaustively search the N × N matrix C for the largest similarity in each
of N − 1 iterations.

For the four HAC methods discussed in this chapter, a more efficient al-
gorithm is the priority-queue algorithm shown in Figure 17.8. Its time com-
plexity is �(N2 log N). The rows C[k] of the N × N similarity matrix C are
sorted in decreasing order of similarity in the priority queues P . P[k].max()
then returns the cluster in P[k] that currently has the highest similarity with
ωk , where we use ωk to denote the kth cluster as in Chapter 16. After cre-
ating the merged cluster of ωk1 and ωk2 , ωk1 is used as its representative.
The function sim computes the similarity function for potential merge pairs:
largest similarity for single-link, smallest similarity for complete-link, aver-
age similarity for GAAC (Section 17.3), and centroid similarity for centroid
clustering (Section 17.4). We give an example of how a row of C is processed
(Figure 17.8, bottom panel). Both high-level loops (lines 1–7 and 9–21) are
�(N2 log N) for an implementation of priority queues that supports deletion
and insertion in �(log N). The overall complexity of the algorithm is there-
fore �(N2 log N). In the definition of the function Sim, �vm and �vi are the vector
sums of ωk1 ∪ ωk2 and ωi , respectively, and Nm and Ni are the number of doc-
uments in ωk1 ∪ ωk2 and ωi , respectively.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

354 Hierarchical clustering

EfficientHAC(�d1, . . . , �dN)
1 for n ← 1 to N
2 do for i ← 1 to N
3 do C[n][i].sim ← �dn · �di

4 C[n][i].index ← i
5 I [n] ← 1
6 P[n] ← priority queue for C[n] sorted on sim
7 P[n].Delete(C[n][n]) (don’t want self-similarities)
8 A ← []
9 for k ← 1 to N − 1

10 do k1 ← arg max{k:I [k]=1} P[k].Max().sim
11 k2 ← P[k1].Max().index
12 A.Append(〈k1, k2〉)
13 I [k2] ← 0
14 P[k1] ← []
15 for each i with I [i] = 1 ∧ i �= k1

16 do P[i].Delete(C[i][k1])
17 P[i].Delete(C[i][k2])
18 C[i][k1].sim ← Sim(i, k1, k2)
19 P[i].Insert(C[i][k1])
20 C[k1][i].sim ← Sim(i, k1, k2)
21 P[k1].Insert(C[k1][i])
22 return A

clustering algorithm sim(i, k1, k2)
single-link max(sim(i, k1), sim(i, k2))
complete-link min(sim(i, k1), sim(i, k2))
centroid (1

Nm
�vm) · (1

Ni
�vi)

group-average 1
(Nm+Ni)(Nm+Ni −1) [(�vm + �vi)2 − (Nm + Ni)]

compute C[5]
1 2 3 4 5
0.2 0.8 0.6 0.4 1.0

create P[5] (by sorting)
2 3 4 1
0.8 0.6 0.4 0.2

merge 2 and 3, update
similarity of 2, delete 3

2 4 1
0.3 0.4 0.2

delete and reinsert 2
4 2 1
0.4 0.3 0.2

Figure 17.8 The priority-queue algorithm for HAC. Top: The algorithm. Center: Four different
similarity measures. Bottom: An example for processing steps 6 and 16–19. This is a made up
example showing P[5] for a 5 × 5 matrix C .

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.2 Single-link and complete-link clustering 355

SingleLinkClustering(d1, . . . , dN)
1 for n ← 1 to N
2 do for i ← 1 to N
3 do C[n][i].sim ← SIM(dn, di)
4 C[n][i].index ← i
5 I [n] ← n
6 NB M[n] ← arg maxX∈{C[n][i]:n�=i} X.sim
7 A ← []
8 for n ← 1 to N − 1
9 do i1 ← arg max{i :I [i]=i} NB M[i].sim

10 i2 ← I [NB M[i1].index]
11 A.Append(〈i1, i2〉)
12 for i ← 1 to N
13 do if I [i] = i ∧ i �= i1 ∧ i �= i2

14 then C[i1][i].sim ← C[i][i1].sim ← max(C[i1][i].sim, C[i2][i].sim)
15 if I [i] = i2

16 then I [i] ← i1

17 NB M[i1] ← arg maxX∈{C[i1][i]:I [i]=i∧i �=i1} X.sim
18 return A

Figure 17.9 Single-link clustering algorithm using an NBM array. After merging two clusters i1

and i2, the first one (i1) represents the merged cluster. If I [i] = i , then i is the representative of
its current cluster. If I [i] �= i , then i has been merged into the cluster represented by I [i] and will
therefore be ignored when updating NB M[i1].

The argument of EfficientHAC in Figure 17.8 is a set of vectors (as op-
posed to a set of generic documents) because group-average agglomerative
clustering and centroid clustering (Sections 17.3 and 17.4) require vectors as
input. The complete-link version of EfficientHAC can also be applied to
documents that are not represented as vectors.

For single link, we can introduce a next-best-merge array (NBM) as a fur-
ther optimization as shown in Figure 17.9. NBM keeps track of what the best
merge is for each cluster. Each of the two top level for-loops in Figure 17.9
are �(N2), thus the overall complexity of single-link clustering is �(N2).

Can we also speed up the other three HAC algorithms with an NBM array?
We cannot because only single-link clustering is best-merge persistent. Sup-best-merge

persistence pose that the best merge cluster for ωk is ω j in single-link clustering. Then
after merging ω j with a third cluster ωi �= ωk , the merge of ωi and ω j will be
ωk ’s best merge cluster (Exercise 17.6). In other words, the best-merge can-
didate for the merged cluster is one of the two best-merge candidates of its
components in single-link clustering. This means that C can be updated in
�(N) in each iteration by taking a simple max of two values on Line 14 in
Figure 17.9 for each of the remaining ≤ N clusters.

Figure 17.10 demonstrates that best-merge persistence does not hold for
complete-link clustering, which means that we cannot use an NBM array to

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

356 Hierarchical clustering

0 1 2 3 4 5 6 7 8 9 10
0
1 ×

d1

×

d2

×

d3

×

d4

Figure 17.10 Complete-link clustering is not best-merge persistent. At first, d2 is the best-merge
cluster for d3. But after merging d1 and d2, d4 becomes d3’s best-merge candidate. In a best-merge
persistent algorithm like single-link, d3’s best-merge cluster would be {d1, d2}.

speed up clustering. After merging d3’s best merge candidate d2 with cluster
d1, an unrelated cluster d4 becomes the best merge candidate for d3. This is
because the complete-link merge criterion is nonlocal and can be affected by
points at a great distance from the area where two merge candidates meet.

In practice, the efficiency penalty of the �(N2 log N) algorithm is small
compared with the �(N2) single-link algorithm because computing the sim-
ilarity between two documents (e.g., as a dot product) is an order of mag-
nitude slower than a comparison of two values in sorting. All four HAC
algorithms in this chapter are �(N2) with respect to similarity computations.
So the difference in complexity is rarely a concern in practice when choosing
one of the algorithms.

? Exercise 17.1 Show that complete-link clustering creates the two-cluster
clustering depicted in Figure 17.7.

17.3 Group-average agglomerative clustering

Group-average agglomerative clustering or GAAC (see Figure 17.3, (d)) evalu-group-
average

agglomera-
tive

clustering

ates cluster quality based on all similarities between documents, thus avoid-
ing the pitfalls of the single-link and complete-link criteria, which equate
cluster similarity with the similarity of a single pair of documents. GAAC
is also called group-average clustering and average-link clustering. GAAC com-
putes the average similarity sim-ga of all pairs of documents, including pairs
from the same cluster. But self-similarities are not included in the average:

sim-ga(ωi , ω j) = 1
(Ni + Nj)(Ni + Nj − 1)

∑
dm∈ωi ∪ω j

∑
dn∈ωi ∪ω j ,dn �=dm

�dm · �dn(17.1)

where �d is the length-normalized vector of document d, · denotes the dot
product, and Ni and Nj are the number of documents in ωi and ω j , respec-
tively.

The motivation for GAAC is that our goal in selecting two clusters ωi

and ω j as the next merge in HAC is that the resulting merge cluster ωk =
ωi ∪ ω j should be coherent. To judge the coherence of ωk , we need to look
at all document–document similarities within ωk , including those that occur
within ωi and those that occur within ω j .

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.3 Group-average agglomerative clustering 357

We can compute the measure sim-ga efficiently because the sum of indi-
vidual vector similarities is equal to the similarities of their sums:

∑
dm∈ωi

∑
dn∈ω j

(�dm · �dn) =
⎛⎝ ∑

dm∈ωi

�dm

⎞⎠ ·
⎛⎝ ∑

dn∈ω j

�dn

⎞⎠ .(17.2)

With (17.2), we have:

sim-ga(ωi , ω j) = 1
(Ni + Nj)(Ni + Nj − 1)

⎡⎢⎣
⎛⎝ ∑

dm∈ωi ∪ω j

�dm

⎞⎠2

− (Ni + Nj)

⎤⎥⎦ .(17.3)

The term (Ni + Nj) on the right is the sum of Ni + Nj self-similarities of value
1.0. With this trick we can compute cluster similarity in constant time (assum-
ing we have available the two vector sums

∑
dm∈ωi

�dm and
∑

dm∈ω j
�dm) instead

of in �(Ni Nj). This is important because we need to be able to compute the
function Sim on lines 18 and 20 in EfficientHAC (Figure 17.8) in constant
time for efficient implimentations of GAAC. Note that for two singleton clus-
ters equation (17.3) is equivalent to the dot product.

Equation (17.2) relies on the distributivity of the dot product with respect
to vector addition. Because this is crucial for the efficient computation of a
GAAC clustering, the method cannot be easily applied to representations of
documents that are not real-valued vectors. Also, Equation (17.2) only holds
for the dot product. Although many algorithms introduced in this book have
near-equivalent descriptions in terms of dot product, cosine similarity, and
Euclidean distance (cf. Section 14.1, page 267), Equation (17.2) can only be
expressed using the dot product. This is a fundamental difference between
single-link/complete-link clustering and GAAC. The first two only require a
square matrix of similarities as input and do not care how these similarities
were computed.

To summarize, GAAC requires (i) documents represented as vectors, (ii)
length normalization of vectors, so that self-similarities are 1.0, and (iii)
the dot product for computing the similarity between vectors and sums of
vectors.

The merge algorithms for GAAC and complete-link clustering are the
same except that we use Equation (17.3) as similarity function in Figure 17.8.
So the overall time complexity of GAAC is the same as for complete-link clus-
tering: �(N2 log N). Like complete-link clustering, GAAC is not best-merge
persistent (Exercise 17.6). This means that there is no �(N2) algorithm for
GAAC that would be analogous to the �(N2) algorithm for single-link in
Figure 17.9.

We can also define group-average similarity as including self-similarities:

sim-ga′(ωi , ω j) = 1
(Ni+Nj)2

⎛⎝ ∑
dm∈ωi ∪ω j

�dm

⎞⎠2

= 1
Ni+Nj

∑
dm∈ωi ∪ω j

[�dm · �µ(ωi ∪ω j)](17.4)

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

358 Hierarchical clustering

where the centroid �µ(ω) is defined as in Equation (14.1) (page 269). This def-
inition is equivalent to the intuitive definition of cluster quality as average
similarity of documents �dm to the cluster’s centroid �µ.

Self-similarities are always equal to 1.0, the maximum possible value
for length-normalized vectors. The proportion of self-similarities in Equa-
tion (17.4) is i/ i2 = 1/ i for a cluster of size i . This gives an unfair advantage
to small clusters; they will have proportionally more self-similarities. For
two documents d1, d2 with a similarity s, we have sim-ga′(d1, d2) = (1 + s)/2.
In contrast, sim-ga(d1, d2) = s ≤ (1 + s)/2. This similarity sim-ga(d1, d2) of
two documents is the same as in single-link, complete-link, and centroid
clustering. We prefer the definition in Equation (17.3), which excludes self-
similarities from the average, because we do not want to penalize large clus-
ters for their smaller proportion of self-similarities and because we want a
consistent similarity value s for document pairs in all four HAC algorithms.

? Exercise 17.2 Apply group-average clustering to the points in Figures 17.6
and 17.7. Map them onto the surface of the unit sphere in a threedimen-
sional space to get length-normalized vectors. Is the group-average clus-
tering different from the single-link and complete-link clusterings?

17.4 Centroid clustering

In centroid clustering, the similarity of two clusters is defined as the similar-
ity of their centroids:

sim-cent(ωi , ω j) = �µ(ωi) · �µ(ω j)(17.5)

=
⎛⎝ 1

Ni

∑
dm∈ωi

�dm

⎞⎠ ·
⎛⎝ 1

Nj

∑
dn∈ω j

�dn

⎞⎠
= 1

Ni Nj

∑
dm∈ωi

∑
dn∈ω j

�dm · �dn(17.6)

Equation (17.5) is centroid similarity. Equation (17.6) shows that centroid
similarity is equivalent to average similarity of all pairs of documents from
different clusters. Thus, the difference between GAAC and centroid clustering
is that GAAC considers all pairs of documents in computing average pair-
wise similarity (Figure 17.3, (d)) whereas centroid clustering excludes pairs
from the same cluster (Figure 17.3, (c)).

Figure 17.11 shows the first three steps of a centroid clustering. The first
two iterations form the clusters {d5, d6} with centroid µ1 and {d1, d2} with
centroid µ2 because the pairs 〈d5, d6〉 and 〈d1, d2〉 have the highest centroid
similarities. In the third iteration, the highest centroid similarity is between
µ1 and d4 producing the cluster {d4, d5, d6} with centroid µ3.

Like GAAC, centroid clustering is not best-merge persistent and therefore
�(N2 log N) (Exercise 17.6).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.4 Centroid clustering 359

0 1 2 3 4 5 6 7
0

1

2

3

4

5 × d1

× d2

× d3

× d4

×d5 × d6
µ1

µ3

µ2

Figure 17.11 Three iterations of centroid clustering. Each iteration merges the two clusters whose
centroids are closest.

In contrast to the other three HAC algorithms, centroid clustering is not
monotonic. So-called inversions can occur: Similarity can increase duringinversion

clustering as in the example in Figure 17.12, where we define similarity as
negative distance. In the first merge, the similarity of d1 and d2 is −(4 − ε). In
the second merge, the similarity of the centroid of d1 and d2 (the circle) and
d3 is ≈ − cos(π/6) × 4 = −√

3/2 × 4 ≈ −3.46 > −(4 − ε). This is an example
of an inversion: Similarity increases in this sequence of two clustering steps.
In a monotonic HAC algorithm, similarity is monotonically decreasing from
iteration to iteration.

Increasing similarity in a series of HAC clustering steps contradicts the
fundamental assumption that small clusters are more coherent than large
clusters. An inversion in a dendrogram shows up as a horizontal merge line
that is lower than the previous merge line. All merge lines in Figures 17.1
and 17.5 are higher than their predecessors because single-link and complete-
link clustering are monotonic clustering algorithms.

Despite its nonmonotonicity, centroid clustering is often used because its
similarity measure – the similarity of two centroids – is conceptually simpler
than the average of all pairwise similarities in GAAC. Figure 17.11 is all one
needs to understand centroid clustering. There is no equally simple graph
that would explain how GAAC works.

0 1 2 3 4 5
0
1
2
3
4
5

× ×

×

d1 d2

d3

−4
−3
−2
−1

0 × × ×
d1 d2 d3

Figure 17.12 Centroid clustering is not monotonic. The documents d1 at (1 + ε, 1), d2 at (5, 1), and
d3 at (3, 1 + 2

√
3) are almost equidistant, with d1 and d2 closer to each other than to d3. The non-

monotonic inversion in the hierarchical clustering of the three points appears as an intersecting
merge line in the dendrogram. The intersection is circled.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

360 Hierarchical clustering

? Exercise 17.3 For a fixed set of N documents there are up to N2 distinct sim-
ilarities between clusters in single-link and complete-link clustering. How
many distinct cluster similarities are there in GAAC and centroid cluster-
ing?

✄ 17.5 Optimality of hierarchical agglomerative clustering

To state the optimality conditions of hierarchical clustering precisely, we first
define the combination similarity comb-sim of a clustering � = {ω1, . . . , ωK }
as the smallest combination similarity of any of its K clusters:

comb-sim({ω1, . . . , ωK }) = min
k

comb-sim(ωk).

Recall that the combination similarity of a cluster ω that was created as the
merge of ω1 and ω2 is the similarity of ω1 and ω2 (page 347).

We then define � = {ω1, . . . , ωK } to be optimal if all clusterings �′ with koptimal
clustering clusters, k ≤ K , have lower combination similarities:

|�′| ≤ |�| ⇒ comb-sim(�′) ≤ comb-sim(�).

Figure 17.12 shows that centroid clustering is not optimal. The clus-
tering {{d1, d2}, {d3}} (for K = 2) has combination similarity −(4 − ε) and
{{d1, d2, d3}} (for K = 1) has combination similarity −3.46. So the clustering
{{d1, d2}, {d3}} produced in the first merge is not optimal because there is a
clustering with fewer clusters ({{d1, d2, d3}}) that has higher combination sim-
ilarity. Centroid clustering is not optimal because inversions can occur.

The above definition of optimality would be of limited use if it was only
applicable to a clustering together with its merge history. However, we can
show (Exercise 17.4) that combination similarity for the three non-inversion al-combination

similarity gorithms can be read off from the cluster without knowing its history. These
direct definitions of combination similarity are as follows.

single-link The combination similarity of a cluster ω is the smallest simi-
larity of any bipartition of the cluster, where the similarity of a biparti-
tion is the largest similarity between any two documents from the two
parts:

comb-sim(ω) = min
{ω′:ω′⊂ω}

max
di ∈ω′

max
d j ∈ω−ω′

sim(di , d j)

where each 〈ω′, ω − ω′〉 is a possible bipartition of ω.
complete link The combination similarity of a cluster ω is the smallest

similarity of any two points in ω: mindi ∈ω mind j ∈ω sim(di , d j).
GAAC The combination similarity of a cluster ω is the average of all pair-

wise similarities in ω (where self-similarities are not included in the av-
erage): Equation (17.3).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.5 Optimality of hierarchical agglomerative clustering 361

If we use these definitions of combination similarity, then optimality is a
property of a set of clusters and not of a process that produces a set of clus-
ters.

We can now prove the optimality of single-link clustering by induction
over the number of clusters K . We will give a proof for the case where no two
pairs of documents have the same similarity, but it can easily be extended to
the case with ties.

The inductive basis of the proof is that a clustering with K = N clusters
has combination similarity 1.0, which is the largest value possible. The in-
duction hypothesis is that a single-link clustering �K with K clusters is
optimal: comb-sim(�K) > comb-sim(�′

K) for all �′
K . Assume for contradic-

tion that the clustering �K−1 we obtain by merging the two most simi-
lar clusters in �K is not optimal and that instead a different sequence of
merges �′

K , �′
K−1 leads to the optimal clustering with K − 1 clusters. We

can write the assumption that �′
K−1 is optimal and that �K−1 is not as

comb-sim(�′
K−1) > comb-sim(�K−1).

Case 1: The two documents linked by s = comb-sim(�′
K−1) are in the same

cluster in �K . They can only be in the same cluster if a merge with similar-
ity smaller than s has occurred in the merge sequence producing �K . This
implies s > comb-sim(�K). Thus, comb-sim(�′

K−1) = s > comb-sim(�K) >

comb-sim(�′
K) > comb-sim(�′

K−1). Contradiction.
Case 2: The two documents linked by s = comb-sim(�′

K−1) are not in
the same cluster in �K . But s = comb-sim(�′

K−1) > comb-sim(�K−1), so the
single-link merging rule should have merged these two clusters when pro-
cessing �K . Contradiction.

Thus, �K−1 is optimal.
In contrast to single-link clustering, complete-link clustering and GAAC

are not optimal as this example shows:

× × × ×13 3
d1 d2 d3 d4

Both algorithms merge the two points with distance 1 (d2 and d3)
first and thus cannot find the two-cluster clustering {{d1, d2}, {d3, d4}}. But
{{d1, d2}, {d3, d4}} is optimal on the optimality criteria of complete-link clus-
tering and GAAC.

However, the merge criteria of complete-link clustering and GAAC ap-
proximate the desideratum of approximate sphericity better than the merge
criterion of single-link clustering. In many applications, we want spherical
clusters. Thus, even though single-link clustering may seem preferable at
first because of its optimality, it is optimal with respect to the wrong criterion
in many document clustering applications.

Table 17.1 summarizes the properties of the four HAC algorithms in-
troduced in this chapter. We recommend GAAC for document clustering

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

362 Hierarchical clustering

Table 17.1 Comparison of HAC algorithms.

method combination similarity time compl. optimal? comment

single link max inter-similarity of any �(N2) yes chaining effect
2 docs

complete link min inter-similarity of any �(N2 log N) no sensitive to outliers
2 docs

group average average of all sims �(N2 log N) no best choice for
most applications

centroid average inter-similarity �(N2 log N) no inversions can occur

because it is generally the method that produces the clustering with the best
properties for applications. It does not suffer from chaining, from sensitivity
to outliers and from inversions.

There are two exceptions to this recommendation. First, for nonvector rep-
resentations, GAAC is not applicable and clustering should typically be per-
formed with the complete-link method.

Second, in some applications the purpose of clustering is not to create a
complete hierarchy or exhaustive partition of the entire document set. For
instance, first story detection or novelty detection is the task of detecting the firstfirst story

detection occurrence of an event in a stream of news stories. One approach to this task
is to find a tight cluster within the documents that were sent across the wire
in a short period of time and are dissimilar from all previous documents. For
example, the documents sent over the wire in the minutes after the World
Trade Center attack on September 11, 2001, form such a cluster. Variations of
single-link clustering can do well on this task since it is the structure of small
parts of the vector space – and not global structure – that is important in this
case.

Similarly, we will describe an approach to duplicate detection on the web
in Section 19.6 (page 403) where single-link clustering is used in the guise of
the union-find algorithm. Again, the decision whether a group of documents
are duplicates of each other is not influenced by documents that are located
far away and single-link clustering is a good choice for duplicate detection.

? Exercise 17.4 Show the equivalence of the two definitions of combination
similarity: the process definition on page 347 and the static definition on
page 360.

17.6 Divisive clustering

So far we have only looked at agglomerative clustering, but a cluster hierar-
chy can also be generated top-down. This variant of hierarchical clustering
is called top-down clustering or divisive clustering. We start at the top with alltop-down

clustering documents in one cluster. The cluster is split using a flat clustering algorithm.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.7 Cluster labeling 363

This procedure is applied recursively until each document is in its own sin-
gleton cluster.

Top-down clustering is conceptually more complex than bottom-up clus-
tering; we need a second, flat clustering algorithm as a “subroutine.” It has
the advantage of being more efficient if we do not generate a complete hier-
archy all the way down to individual document leaves. For a fixed number
of top levels, using an efficient flat algorithm like K -means, top-down algo-
rithms are linear in the number of documents and clusters. So they run much
faster than HAC algorithms, which are at least quadratic.

There is evidence that divisive algorithms produce more accurate hierar-
chies than bottom-up algorithms in some circumstances. See the references
on bisecting K -means in Section 17.9. Bottom-up methods make cluster-
ing decisions based on local patterns without initially taking into account
the global distribution. These early decisions cannot be undone. Top-down
clustering benefits from complete information about the global distribution
when making top-level partitioning decisions.

17.7 Cluster labeling

In many applications of flat clustering and hierarchical clustering, particu-
larly in analysis tasks and in user interfaces (see applications in Table 16.1,
page 323), human users interact with clusters. In such settings, we must label
clusters, so that users can see what a cluster is about.

Differential cluster labeling selects cluster labels by comparing the distribu-differential
cluster

labeling
tion of terms in one cluster with that of other clusters. The feature selection
methods we introduced in Section 13.5 (page 251) can all be used for differen-
tial cluster labeling.5 In particular, mutual information (MI) (Section 13.5.1,
page 252) or, equivalently, information gain and the χ2 test (Section 13.5.2,
page 255) will identify cluster labels that characterize one cluster in contrast
to other clusters. A combination of a differential test with a penalty for rare
terms often gives the best labeling results because rare terms are not neces-
sarily representative of the cluster as a whole.

We apply three labeling methods to a K -means clustering in Table 17.2. In
this example, there is almost no difference between MI and χ2. We therefore
omit the latter.

Cluster-internal labeling computes a label that solely depends on the clustercluster-
internal
labeling

itself, not on other clusters. Labeling a cluster with the title of the document
closest to the centroid is one cluster-internal method. Titles are easier to read
than a list of terms. A full title can also contain important context that did
not make it into the top ten terms selected by MI. On the web, anchor text

5 Selecting the most frequent terms is a non-differential feature selection technique we dis-
cussed in Section 13.5. It can also be used for labeling clusters.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

364 Hierarchical clustering

Table 17.2 Automatically computed cluster labels. This is for three of ten clusters (4, 9, and 10) in
a K -means clustering of the first 10,000 documents in Reuters-RCV1. The last three columns show
cluster summaries computed by three labeling methods: most highly weighted terms in centroid
(centroid), mutual information, and the title of the document closest to the centroid of the cluster
(title). Terms selected by only one of the first two methods are in bold.

labeling method

docs centroid mutual information title

4 622 oil plant mexico
production crude
power 000 refinery
gas bpd

plant oil production
barrels crude bpd
mexico dolly capacity
petroleum

MEXICO: Hurricane
Dolly heads for
Mexico coast

9 1017 police security russian
people military peace
killed told grozny
court

police killed military
security peace told
troops forces rebels
people

RUSSIA: Russia’s
Lebed meets rebel
chief in Chechnya

10 1259 00 000 tonnes traders
futures wheat prices
cents september
tonne

delivery traders
futures tonne tonnes
desk wheat prices 000
00

USA: Export Business
- Grain/oilseeds
complex

can play a role similar to a title since the anchor text pointing to a page can
serve as a concise summary of its contents.

In Table 17.2, the title for cluster 9 suggests that many of its documents are
about the Chechnya conflict, a fact the MI terms do not reveal. However, a
single document is unlikely to be representative of all documents in a cluster.
An example is cluster 4, whose selected title is misleading. The main topic of
the cluster is oil. Articles about hurricane Dolly only ended up in this cluster
because of its effect on oil prices.

We can also use a list of terms with high weights in the centroid of the clus-
ter as a label. Such highly weighted terms (or, even better, phrases, especially
noun phrases) are often more representative of the cluster than a few titles
can be, even if they are not filtered for distinctiveness as in the differential
methods. However, a list of phrases takes more time to digest for users than
a well crafted title.

Cluster-internal methods are efficient, but they fail to distinguish terms
that are frequent in the collection as a whole from those that are frequent only
in the cluster. Terms like year or Tuesday may be among the most frequent in
a cluster, but they are not helpful in understanding the contents of a cluster
with a specific topic like oil.

In Table 17.2, the centroid method selects a few more uninformative terms
(000, court, cents, september) than MI (forces, desk), but most of the terms se-
lected by either method are good descriptors. We get a good sense of the
documents in a cluster from scanning the selected terms.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.8 Implementation notes 365

For hierarchical clustering, additional complications arise in cluster label-
ing. Not only do we need to distinguish an internal node in the tree from
its siblings, but also from its parent and its children. Documents in child
nodes are by definition also members of their parent node, so we cannot use
a naive differential method to find labels that distinguish the parent from its
children. However, more complex criteria, based on a combination of over-
all collection frequency and prevalence in a given cluster, can determine
whether a term is a more informative label for a child node or a parent node
(see Section 17.9).

17.8 Implementation notes

Most problems that require the computation of a large number of dot prod-
ucts benefit from an inverted index. This is also the case for HAC clustering.
Computational savings due to the inverted index are large if there are many
zero similarities – either because many documents do not share any terms or
because an aggressive stop list is used.

In low dimensions, more aggressive optimizations are possible that make
the computation of most pairwise similarities unnecessary (Exercise 17.10).
However, no such algorithms are known in higher dimensions. We encoun-
tered the same problem in k nearest neighbor (kNN) classification (see Sec-
tion 14.7, page 291).

When using GAAC on a large document set in high dimensions, we have
to take care to avoid dense centroids. For dense centroids, clustering can take
time �(MN2 log N) where M is the size of the vocabulary, whereas complete-
link clustering is �(Mave N2 log N) where Mave is the average size of the
vocabulary of a document. So for large vocabularies complete-link cluster-
ing can be more efficient than an unoptimized implementation of GAAC.
We discussed this problem in the context of K -means clustering in Chap-
ter 16 (page 336) and suggested two solutions: truncating centroids (keeping
only highly weighted terms) and representing clusters by means of sparse
medoids instead of dense centroids. These optimizations can also be applied
to GAAC and centroid clustering.

Even with these optimizations, HAC algorithms are all �(N2) or
�(N2 log N) and therefore infeasible for large sets of 1,000,000 or more doc-
uments. For such large sets, HAC can only be used in combination with a
flat clustering algorithm like K -means. Recall that K -means requires a set of
seeds as initialization (Figure 16.5, page 332). If these seeds are badly chosen,
then the resulting clustering will be of poor quality. We can employ an HAC
algorithm to compute seeds of high quality. If the HAC algorithm is applied
to a document subset of size

√
N, then the overall runtime of K -means cum

HAC seed generation is �(N). This is because the application of a quadratic
algorithm to a sample of size

√
N has an overall complexity of �(N). An

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

366 Hierarchical clustering

appropriate adjustment can be made for an �(N2 log N) algorithm to guar-
antee linearity. This algorithm is referred to as the Buckshot algorithm. It com-Buckshot

algorithm bines the determinism and higher reliability of HAC with the efficiency of
K -means.

? Exercise 17.5 A single-link clustering can also be computed from the min-

minimum
spanning

tree

imum spanning tree of a graph. The minimum spanning tree connects the
vertices of a graph at the smallest possible cost, where cost is defined as
the sum over all edges of the graph. In our case the cost of an edge is
the distance between two documents. Show that if �k−1 > �k > . . . > �1

are the costs of the edges of a minimum spanning tree, then these edges
correspond to the k − 1 merges in constructing a single-link clustering.

Exercise 17.6 Show that single-link clustering is best-merge persistent and
that GAAC and centroid clustering are not best-merge persistent.

Exercise 17.7
a. Consider running 2-means clustering on a collection with documents
from two different languages. What result would you expect?
b. Would you expect the same result when running an HAC algorithm?

Exercise 17.8 Download Reuters-21578. Keep only documents that are in
the classes crude, interest, and grain. Discard documents that are mem-
bers of more than one of these three classes. Compute a (i) single-link, (ii)
complete-link, (iii) GAAC, and (iv) centroid clustering of the documents.
(v) Cut each dendrogram at the second branch from the top to obtain
K = 3 clusters. Compute the Rand index for each of the four clusterings.
Which clustering method performs best?

Exercise 17.9 Suppose a run of HAC finds the clustering with K = 7 to
have the highest value on some prechosen goodness measure of clustering.
Have we found the highest-value clustering among all clusterings with
K = 7?

Exercise 17.10 Consider the task of producing a single-link clustering of N
points on a line:

× × × × × × × × × ×

Show that we only need to compute a total of about N similarities. What is
the overall complexity of single-link clustering for a set of points on a line?

Exercise 17.11 Prove that single-link, complete-link, and group-average
clustering are monotonic in the sense defined on page 347.

Exercise 17.12 For N points, there are ≤ NK different flat clusterings into K
clusters (Section 16.2, page 327). What is the number of different hierar-
chical clusterings (or dendrograms) of N documents? Are there more flat
clusterings or more hierarchical clusterings for given K and N?

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

17.9 References and further reading 367

17.9 References and further reading

An excellent general review of clustering is (Jain et al. 1999). Early references
for specific HAC algorithms are (King 1967) (single-link), (Sneath and Sokal
1973) (complete-link, GAAC), and (Lance and Williams 1967) (discussing a
large variety of hierarchical clustering algorithms). The single-link algorithm
in Figure 17.9 is similar to Kruskal’s algorithm for constructing a minimumKruskal’s

algorithm spanning tree. A graph-theoretical proof of the correctness of Kruskal’s algo-
rithm (which is analogous to the proof in Section 17.5) is provided by Cor-
men et al. (1990, Theorem 23.1). See Exercise 17.5 for the connection between
minimum spanning trees and single-link clusterings.

It is often claimed that hierarchical clustering algorithms produce better
clusterings than flat algorithms (Jain and Dubes (1988, p. 140); Cutting et al.
(1992); Larsen and Aone (1999)) although more recently there have been ex-
perimental results suggesting the opposite (Zhao and Karypis 2002). Even
without a consensus on average behavior, there is no doubt that results of
EM and K -means are highly variable since they will often converge to a local
optimum of poor quality. The HAC algorithms we have presented here are
deterministic and thus more predictable.

The complexity of complete-link, group-average, and centroid clustering
is sometimes given as �(N2) (Day and Edelsbrunner 1984; Voorhees 1985b;
Murtagh 1983) because a document similarity computation is an order of
magnitude more expensive than a simple comparison, the main operation
executed in the merging steps after the N × N similarity matrix has been
computed.

The centroid algorithm described here is due to Voorhees (1985b).
Voorhees recommends complete-link and centroid clustering over single-link
for a retrieval application. The Buckshot algorithm was originally published
by Cutting et al. (1993). Allan et al. (1998) apply single-link clustering to first
story detection.

An important HAC technique not discussed here is Ward’s method (WardWard’s
method Jr. 1963; El-Hamdouchi and Willett 1986), also called minimum variance clus-

tering. In each step, it selects the merge with the smallest RSS (Chapter 16,
page 332). The merge criterion in Ward’s method (a function of all individual
distances from the centroid) is closely related to the merge criterion in GAAC
(a function of all individual similarities to the centroid).

Despite its importance for making the results of clustering useful, com-
paratively little work has been done on labeling clusters. Popescul and Un-
gar (2000) obtain good results with a combination of χ2 and collection fre-
quency of a term. Glover et al. (2002b) use information gain for labeling clus-
ters of web pages. Stein and zu Eissen’s approach is ontology based (2004).
The more complex problem of labeling nodes in a hierarchy (which requires
distinguishing more general labels for parents from more specific labels for

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 16:11

368 Hierarchical clustering

children) is tackled by Glover et al. (2002a) and Treeratpituk and Callan
(2006). Some clustering algorithms attempt to find a set of labels first and
then build (often overlapping) clusters around the labels, thereby avoid-
ing the problem of labeling altogether (Zamir and Etzioni 1999; Käki 2005;
Osiński and Weiss 2005). We know of no comprehensive study that com-
pares the quality of such “label-based” clustering to the clustering algorithms
discussed in this chapter and in Chapter 16. In principle, work on multi-
document summarization (McKeown and Radev 1995) is also applicable to
cluster labeling, but multidocument summaries are usually longer than the
short text fragments needed when labeling clusters (cf. Section 8.7, page 157).
Presenting clusters in a way that users can understand is a UI problem. We
recommend reading (Baeza-Yates and Ribeiro-Neto 1999, Chapter 10) for an
introduction to user interfaces in IR.

An example of an efficient divisive algorithm is bisecting K -means (Stein-
bach et al. 2000). Spectral clustering algorithms (Kannan et al. 2000; Dhillonspectral

clustering 2001; Zha et al. 2001; Ng et al. 2001a), including principal direction divisive
partitioning (PDDP) (whose bisecting decisions are based on SVD, see Chap-
ter 18) (Boley 1998; Savaresi and Boley 2004), are computationally more ex-
pensive than bisecting K -means, but have the advantage of being determin-
istic.

Unlike K -means and EM, most hierarchical clustering algorithms do
not have a probabilistic interpretation. Model-based hierarchical clustering
(Vaithyanathan and Dom 2000; Kamvar et al. 2002; Castro et al. 2004) is an
exception.

The evaluation methodology described in Section 16.3 (page 327) is also
applicable to hierarchical clustering. Specialized evaluation measures for hi-
erarchies are discussed by Fowlkes and Mallows (1983), Larsen and Aone
(1999), and Sahoo et al. (2006).

The R environment (R Development Core Team 2005) offers good support
for hierarchical clustering. The R function hclust implements single-link,
complete-link, group-average, and centroid clustering, and Ward’s method.
Another option provided is median clustering, which represents each cluster
by its medoid (cf. k-medoids in Chapter 16, page 336). Support for cluster-
ing vectors in high-dimensional spaces is provided by the software package
CLUTO (http://glaros.dtc.umn.edu/gkhome/views/cluto).

