

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7Computing scores in a complete
search system

Chapter 6 developed the theory underlying term weighting in documents
for the purposes of scoring, leading up to vector space models and the basic
cosine scoring algorithm of Section 6.3.3 (page 114). In this chapter, we be-
gin in Section 7.1 with heuristics for speeding up this computation; many of
these heuristics achieve their speed at the risk of not finding quite the top K
documents matching the query. Some of these heuristics generalize beyond
cosine scoring. With Section 7.1 in place, we have essentially all the compo-
nents needed for a complete search engine. We therefore take a step back
from cosine scoring, to the more general problem of computing scores in a
search engine. In Section 7.2, we outline a complete search engine, includ-
ing indexes and structures to support not only cosine scoring, but also more
general ranking factors such as query term proximity. We describe how all
of the various pieces fit together in Section 7.2.4. We conclude this chapter
with Section 7.3, where we discuss how the vector space model for free text
queries interacts with common query operators.

7.1 Efficient scoring and ranking

We begin by recapping the algorithm of Figure 6.14. For a query such as q =
jealous gossip, two observations are immediate:

1. The unit vector �v(q) has only two nonzero components.
2. In the absence of any weighting for query terms, these nonzero compo-

nents are equal – in this case, both equal 0.707.

For the purpose of ranking the documents matching this query, we are
really interested in the relative (rather than absolute) scores of the documents
in the collection. To this end, it suffices to compute the cosine similarity from
each document unit vector �v(d) to �V(q) (in which all nonzero components of
the query vector are set to 1), rather than to the unit vector �v(q). For any two

124

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.1 Efficient scoring and ranking 125

FastCosineScore(q)
1 float Scores[N] = 0
2 for each d
3 do Initialize Length[d] to the length of doc d
4 for each query term t
5 do calculate wt,q and fetch postings list for t
6 for each pair(d, tft,d) in postings list
7 do add wft,d to Scores[d]
8 Read the array Length[d]
9 for each d

10 do Divide Scores[d] by Length[d]
11 return Top K components of Scores[]

Figure 7.1 A faster algorithm for vector space scores.

documents d1, d2

�V(q) · �v(d1) > �V(q) · �v(d2) ⇔ �v(q) · �v(d1) > �v(q) · �v(d2).(7.1)

For any document d, the cosine similarity �V(q) · �v(d) is the weighted sum,
over all terms in the query q , of the weights of those terms in d. This in
turn can be computed by a postings intersection exactly as in the algorithm
of Figure 6.14, with line 8 altered because we take wt,q to be 1 so that the
multiply-add in that step becomes just an addition; the result is shown in
Figure 7.1. We walk through the postings in the inverted index for the terms
in q , accumulating the total score for each document – very much as in pro-
cessing a Boolean query, except we assign a positive score to each document
that appears in any of the postings being traversed. As mentioned in Sec-
tion 6.3.3, we maintain an idf value for each dictionary term and a tf value
for each postings entry. This scheme computes a score for every document in
the postings of any of the query terms; the total number of such documents
may be considerably smaller than N.

Given these scores, the final step before presenting results to a user is to
pick out the K highest-scoring documents. Although one could sort the com-
plete set of scores, a better approach is to use a heap to retrieve only the top
K documents in order. Where J is the number of documents with nonzero
cosine scores, constructing such a heap can be performed in 2J comparison
steps, following which each of the K highest scoring documents can be “read
off” the heap with log J comparison steps.

7.1.1 Inexact top K document retrieval

Thus far, we have focused on retrieving precisely the K highest-scoring doc-
uments for a query. We now consider schemes by which we produce K doc-
uments that are likely to be among the K highest scoring documents for a

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

126 Computing scores in a complete search system

query. In doing so, we hope to dramatically lower the cost of computing the
K documents we output, without materially altering the user’s perceived
relevance of the top K results. Consequently, in most applications it suffices
to retrieve K documents whose scores are very close to those of the K best.
In the sections that follow, we detail schemes that retrieve K such documents
while potentially avoiding computing scores for most of the N documents in
the collection.

Such inexact top K retrieval is not necessarily, from the user’s perspective,
a bad thing. The top K documents by the cosine measure are in any case not
necessarily the K best for the query: cosine similarity is only a proxy for the
user’s perceived relevance. In Sections 7.1.2 through 7.1.6, we give heuris-
tics, using which we are likely to retrieve K documents with cosine scores
close to those of the top K documents. The principal cost in computing the
output stems from computing cosine similarities between the query and a
large number of documents. Having a large number of documents in con-
tention also increases the selection cost in the final stage of culling the top K
documents from a heap. We now consider a series of ideas designed to elim-
inate a large number of documents without computing their cosine scores.
The heuristics have the following two-step scheme:

1. Find a set A of documents that are contenders, where K < |A| � N. A
does not necessarily contain the K top-scoring documents for the query,
but is likely to have many documents with scores near those of the top K .

2. Return the K top-scoring documents in A.

From the descriptions of these ideas, it will be clear that many of them require
parameters to be tuned to the collection and application at hand; pointers
to experience in setting these parameters may be found at the end of this
chapter. It should also be noted that most of these heuristics are well-suited
to free text queries, but not for Boolean or phrase queries.

7.1.2 Index elimination

For a multiterm query q , it is clear we only consider documents containing at
least one of the query terms. We can take this a step further using additional
heuristics:

1. We only consider documents containing terms whose idf exceeds a preset
threshold. Thus, in the postings traversal, we only traverse the postings
for terms with high idf. This has a fairly significant benefit: The postings
lists of low-idf terms are generally long; with these removed from con-
tention, the set of documents for which we compute cosines is greatly
reduced. One way of viewing this heuristic: Low-idf terms are treated as
stop words and do not contribute to scoring. For instance, on the query

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.1 Efficient scoring and ranking 127

catcher in the rye, we only traverse the postings for catcher and rye. The
cutoff threshold can of course be adapted in a query-dependent manner.

2. We only consider documents that contain many (and as a special case, all)
of the query terms. This can be accomplished during the postings traver-
sal; we only compute scores for documents containing all (or many) of
the query terms. A danger of this scheme is that by requiring all (or even
many) query terms to be present in a document before considering it for
cosine computation, we may end up with fewer than K candidate docu-
ments in the output. This issue is discussed further in Section 7.2.1.

7.1.3 Champion lists

The idea of champion lists (sometimes also called fancy lists or top docs) is to
precompute, for each term t in the dictionary, the set of the r documents
with the highest weights for t; the value of r is chosen in advance. For tf–idf
weighting, these are the r documents with the highest tf values for term t.
We call this set of r documents the champion list for term t.

Now, given a query q we create a set A as follows: We take the union of
the champion lists for each of the terms comprising q . We now restrict cosine
computation to only the documents in A. A critical parameter in this scheme
is the value r , which is highly application dependent. Intuitively, r should
be large compared with K , especially if we use any form of the index elim-
ination described in Section 7.1.2. One issue here is that the value r is set at
the time of index construction, whereas K is application dependent and may
not be available until the query is received; as a result, we may (as in the
case of index elimination) find ourselves with a set A that has fewer than K
documents. There is no reason to have the same value of r for all terms in the
dictionary; it could for instance be set to be higher for rarer terms.

7.1.4 Static quality scores and ordering

We now further develop the idea of champion lists, in the somewhat more
general setting of static quality scores. In many search engines, we have avail-static

quality
scores

able a measure of quality g(d) for each document d that is query independent
and thus static. This quality measure may be viewed as a number between
0 and 1. For instance, in the context of news stories on the web, g(d) may be
derived from the number of favorable reviews of the story by web surfers.
Section 4.6 (page 73) provides further discussion on this topic, as does
Chapter 21 in the context of web search.

The net score for a document d is some combination of g(d) together with
the query-dependent score induced (say) by (6.12). The precise combination
may be determined by the learning methods of Section 6.1.2, to be developed

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

128 Computing scores in a complete search system

auto Doc2 Doc1

Doc1

Doc1

Doc2

Doc2

Doc3

Doc3

Doc3

best

car

insurance

Figure 7.2 A static quality-ordered index. In this example we assume that Doc1, Doc2 and Doc3
respectively have static quality scores g(1) = 0.25, g(2) = 0.5, g(3) = 1.

further in Section 15.4.1; but for the purposes of our exposition here, let us
consider a simple sum:

net-score(q , d) = g(d) +
�V(q) · �V(d)

| �V(q)|| �V(d)| .(7.2)

In this simple form, the static quality g(d) and the query-dependent score
from (6.10) have equal contributions, assuming each is between 0 and 1.
Other relative weightings are possible; the effectiveness of our heuristics de-
pends on the specific relative weighting.

First, consider ordering the documents in the postings list for each term by
decreasing value of g(d). This allows us to perform the postings intersection
algorithm of Figure 1.6. To perform the intersection by a single pass through
the postings of each query term, the algorithm of Figure 1.6 relied on the
postings being ordered by document IDs. But, in fact, we only required that
all postings be ordered by a single common ordering; here, we rely on the
g(d) values to provide this common ordering. This is illustrated in Figure 7.2,
where the postings are ordered in decreasing order of g(d).

The next idea is a direct extension of champion lists: For a well-chosen
value r , we maintain for each term t a global champion list of the r documents
with the highest values for g(d) + tf-idft,d . The list itself is, like all the post-
ings lists considered so far, sorted by a common order (either by document
IDs or by static quality). Then at query time, we only compute the net scores
(7.2) for documents in the union of these global champion lists. Intuitively,
this has the effect of focusing on documents likely to have large net scores.

We conclude the discussion of global champion lists with one further idea.
We maintain for each term t two postings lists consisting of disjoint sets of
documents, each sorted by g(d) values. The first list, which we call high, con-
tains the m documents with the highest tf values for t. The second list, which
we call low, contains all other documents containing t. When processing a
query, we first scan only the high lists of the query terms, computing net

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.1 Efficient scoring and ranking 129

scores for any document on the high lists of all (or more than a certain num-
ber of) query terms. If we obtain scores for K documents in the process, we
terminate. If not, we continue the scanning into the low lists, scoring docu-
ments in these postings lists. This idea is developed further in Section 7.2.1.

7.1.5 Impact ordering

In all the postings lists described thus far, we order the documents con-
sistently by some common ordering: typically by document ID but in Sec-
tion 7.1.4 by static quality scores. As noted at the end of Section 6.3.3, such a
common ordering supports the concurrent traversal of all of the query terms’
postings lists, computing the score for each document as we encounter it.
Computing scores in this manner is sometimes referred to as document-at-
a-time scoring. We now introduce a technique for inexact top K retrieval in
which the postings are not all ordered by a common ordering, thereby pre-
cluding such a concurrent traversal. We therefore require scores to be “accu-
mulated” one term at a time as in the scheme of Figure 6.14, so that we have
term-at-a-time scoring.

The idea is to order the documents d in the postings list of term t by de-
creasing order of tft,d . Thus, the ordering of documents varies from one post-
ings list to another, and we cannot compute scores by a concurrent traversal
of the postings lists of all query terms. Given postings lists ordered by de-
creasing order of tft,d , two ideas have been found to significantly lower the
number of documents for which we accumulate scores: (1) when traversing
the postings list for a query term t, we stop after considering a prefix of the
postings list – either after a fixed number of documents r have been seen, or
after the value of tft,d has dropped below a threshold; (2) when accumulat-
ing scores in the outer loop of Figure 6.14, we consider the query terms in
decreasing order of idf, so that the query terms likely to contribute the most
to the final scores are considered first. This latter idea can be adaptive at the
time of processing a query: As we get to query terms with lower idf, we can
determine whether to proceed based on the changes in document scores from
processing the previous query term. If these changes are minimal, we may
omit accumulation from the remaining query terms, or alternatively process
shorter prefixes of their postings lists.

These ideas form a common generalization of the methods introduced in
Sections 7.1.2 through 7.1.4. We may also implement a version of static or-
dering in which each postings list is ordered by an additive combination of
static and query-dependent scores. We again lose the consistency of order-
ing across postings, and therefore have to process query terms one at time,
accumulating scores for all documents as we go along. Depending on the
particular scoring function, the postings list for a document may be ordered
by other quantities than term frequency; under this more general setting, this
idea is known as impact ordering.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

130 Computing scores in a complete search system

Query

FollowerLeader

Figure 7.3 Cluster pruning.

7.1.6 Cluster pruning

In cluster pruning, we have a preprocessing step during which we cluster the
document vectors. Then, at query time, we consider only documents in a
small number of clusters as candidates for which we compute cosine scores.
Specifically, the preprocessing step is as follows:

1. Pick
√

N documents at random from the collection. Call these leaders.
2. For each document that is not a leader, we compute its nearest leader.

We refer to documents that are not leaders as followers. Intuitively, in the par-
tition of the followers induced by the use of

√
N randomly chosen leaders,

the expected number of followers for each leader is ≈ N/
√

N = √
N. Next,

query processing proceeds as follows:

1. Given a query q , find the leader L that is closest to q . This entails comput-
ing cosine similarities from q to each of the

√
N leaders.

2. The candidate set A consists of L together with its followers. We compute
the cosine scores for all documents in this candidate set.

The use of randomly chosen leaders for clustering is fast and likely to re-
flect the distribution of the document vectors in the vector space: A region of
the vector space that is dense in documents is likely to produce multiple lead-
ers and thus a finer partition into subregions. This illustrated in Figure 7.3.

Variations of cluster pruning introduce additional parameters b1 and b2,
both of which are positive integers. In the preprocessing step, we attach each
follower to its b1 closest leaders, rather than a single closest leader. At query
time we consider the b2 leaders closest to the query q . Clearly, this basic
scheme corresponds to the case b1 = b2 = 1. Further, increasing b1 or b2 in-
creases the likelihood of finding K documents that are more likely to be in

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.1 Efficient scoring and ranking 131

the set of true top-scoring K documents, at the expense of more computa-
tion. We reiterate this approach when describing clustering in Chapter 16
(page 325).

? Exercise 7.1 We suggested (Figure 7.2) that the postings for static quality or-
dering be in decreasing order of g(d). Why do we use the decreasing rather
than the increasing order?

Exercise 7.2 When discussing champion lists, we simply used the r docu-
ments with the largest tf values to create the champion list for t. But, when
considering global champion lists, we used idf as well, identifying docu-
ments with the largest values of g(d) + tf-idft,d . Why do we differentiate
between these two cases?

Exercise 7.3 If we were to only have one-term queries, explain why the use
of global champion lists with r = K suffices for identifying the K highest
scoring documents. What is a simple modification to this idea if we were
to only have s-term queries for any fixed integer s > 1?

Exercise 7.4 Explain how the common global ordering by g(d) values in all
high and low lists helps to make the score computation efficient.

Exercise 7.5 Consider again the data of Exercise 6.23 with nnn.atc for query-
dependent scoring. Suppose that we were given static quality scores of 1
for Doc1 and 2 for Doc2. Determine under Equation (7.2) what ranges of
static quality score for Doc3 result in it being the first, second, or third
result for the query best car insurance.

Exercise 7.6 Sketch the frequency-ordered postings for the data in Figure 6.9.

Exercise 7.7 Let the static quality scores for Doc1, Doc2, and Doc3 in Fig-
ure 6.10 be respectively 0.25, 0.5, and 1. Sketch the postings for impact
ordering when each postings list is ordered by the sum of the static quality
score and the Euclidean normalized tf values in Figure 6.10.

Exercise 7.8 The nearest neighbor problem in the plane is the following:
Given a set of N data points on the plane, we preprocess them into some
data structure such that, given a query point Q, we seek the point in N that
is closest to Q in Euclidean distance. Clearly, cluster pruning can be used
as an approach to the nearest neighbor problem in the plane, if we wished
to avoid computing the distance from Q to every one of the query points.
Devise a simple example on the plane so that with two leaders, the answer
returned by cluster pruning is incorrect (it is not the data point closest
to Q).

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

132 Computing scores in a complete search system

7.2 Components of an information retrieval system

In this section, we combine the ideas developed so far to describe a rudi-
mentary search system that retrieves and scores documents. We first de-
velop further ideas for scoring, beyond vector spaces. After this, we put
together all of these elements to outline a complete system. Because we
consider a complete system, we do not restrict ourselves to vector space
retrieval in this section. Indeed, our complete system has provisions for vec-
tor space as well as other query operators and forms of retrieval. In Sec-
tion 7.3, we return to how vector space queries interact with other query
operators.

7.2.1 Tiered indexes

We mentioned in Section 7.1.2 that, when using heuristics such as index elim-
ination for inexact top-K retrieval, we may occasionally find ourselves with
a set A of contenders that has fewer than K documents. A common solution
to this issue is the user of tiered indexes, which may be viewed as a gener-tiered

indexes alization of champion lists. We illustrate this idea in Figure 7.4, where we
represent the documents and terms of Figure 6.9. In this example, we set a tf
threshold of 20 for tier 1 and 10 for tier 2, meaning that the tier 1 index only
has postings entries with tf values exceeding 20, and the tier 2 index only has
postings entries with tf values exceeding 10. In this example, we have chosen
to order the postings entries within a tier by document ID.

7.2.2 Query term proximity

Especially for free text queries on the web (Chapter 19), users prefer a doc-
ument in which most or all of the query terms appear close to each other,
because this is evidence that the document has text focused on their query
intent. Consider a query with two or more query terms, t1, t2, . . . , tk . Let ω

be the width of the smallest window in a document d that contains all the
query terms, measured in the number of words in the window. For instance,
if the document were to simply consist of the sentence The quality of mercy is

not strained, the smallest window for the query strained mercy is 4. Intuitively,
the smaller that ω is, the better that d matches the query. In cases where the
document does not contain all of the query terms, we can set ω to be some
enormous number. We could also consider variants in which only words that
are not stop words are considered in computing ω. Such proximity-weighted
scoring functions are a departure from pure cosine similarity and closer to
the “soft conjunctive” semantics that Google and other web search engines
evidently use.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.2 Components of an information retrieval system 133

Tier 1

Tier 2

Tier 3

auto

best

car

insurance

auto

auto

best

car

car

insurance

insurance

best

Doc2

Doc1

Doc2

Doc1

Doc3

Doc3

Doc3

Doc1

Doc2

Figure 7.4 Tiered indexes. If we fail to get K results from tier 1, query processing “falls back” to
tier 2, and so on. Within each tier, postings are ordered by document ID.

How can we design such a proximity-weighted scoring function to dependproximity
weighting on ω? The simplest answer relies on a “hand coding” technique we intro-

duce in Section 7.2.3. A more scalable approach goes back to Section 6.1.2 –
we treat the integer ω as yet another feature in the scoring function, whose
importance is assigned by machine learning, as will be developed further in
Section 15.4.1.

7.2.3 Designing parsing and scoring functions

Common search interfaces, particularly for consumer-facing search applica-
tions on the web, tend to mask query operators from the end user. The intent
is to hide the complexity of these operators from the largely nontechnical au-
dience for such applications, inviting free text queries. Given such interfaces,

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

134 Computing scores in a complete search system

how should a search equipped with indexes for various retrieval operators
treat a query such as rising interest rates? More generally, given the various fac-
tors we have studied that could affect the score of a document, how should
we combine these features?

The answer of course depends on the user population, the query distri-
bution, and the collection of documents. Typically, a query parser is used to
translate the user-specified keywords into a query with various operators
that is executed against the underlying indexes. Sometimes, this execution
can entail multiple queries against the underlying indexes; for example, the
query parser may issue a stream of queries:

1. Run the user-generated query string as a phrase query. Rank them by vec-
tor space scoring using as query the vector consisting of the three terms
rising interest rates.

2. If fewer than ten documents contain the phrase rising interest rates, run the
two 2-term phrase queries rising interest and interest rates; rank these using
vector space scoring, as well.

3. If we still have fewer than ten results, run the vector space query consist-
ing of the three individual query terms.

Each of these steps (if invoked) may yield a list of scored documents, for
each of which we compute a score. This score must combine contributions
from vector space scoring, static quality, proximity weighting, and, poten-
tially, other factors – particularly because a document may appear in the
lists from multiple steps. This demands an aggregate scoring function that
accumulates evidence of a document’s relevance from multiple sources. Howevidence

accumulation do we devise a query parser and how do we devise the aggregate scoring
function?

The answer depends on the setting. In many enterprise settings, we have
application builders who make use of a toolkit of available scoring opera-
tors, along with a query parsing layer, with which to manually configure
the scoring function as well as the query parser. Such application builders
make use of the available zones, metadata, and knowledge of typical doc-
uments and queries to tune the parsing and scoring. In collections whose
characteristics change infrequently (in an enterprise application, significant
changes in collection and query characteristics typically happen with infre-
quent events such as the introduction of new document formats or document
management systems, or a merger with another company). Web search, on
the other hand, is faced with a constantly changing document collection with
new characteristics being introduced all the time. It is also a setting in which
the number of scoring factors can run into the hundreds, making hand-tuned
scoring a difficult exercise. To address this, it is becoming increasingly com-
mon to use machine-learned scoring, extending the ideas we introduced in
Section 6.1.2, as will be discussed further in Section 15.4.1.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.2 Components of an information retrieval system 135

Documents

Document
cache

Indexes

k-gram Scoring
parameters

MLR

training
set

Results
page

Indexers

Parsing
Linguistics

user query

Free text query parser

Spell correction Scoring and ranking

Tiered inverted
positional index

Inexact
top K

retrieval

Metadata in
zone and

field indexes

Figure 7.5 A complete search system. Data paths are shown primarily for a free text query.

7.2.4 Putting it all together

We have now studied all the components necessary for a basic search system
that supports free text queries as well as Boolean, zone, and field queries. We
briefly review how the various pieces fit together into an overall system; this
is depicted in Figure 7.5.

In this figure, documents stream in from the left for parsing and linguis-
tic processing (language and format detection, tokenization, and stemming).
The resulting stream of tokens feeds into two modules. First, we retain a copy
of each parsed document in a document cache. This enables us to generate
results snippets: snippets of text accompanying each document in the results
list for a query. This snippet tries to give a succinct explanation to the user
of why the document matches the query. The automatic generation of such
snippets is the subject of Section 8.7. A second copy of the tokens is fed to a
bank of indexers that create a bank of indexes, including zone and field in-
dexes that store the metadata for each document, (tiered) positional indexes,
indexes for spelling correction and other tolerant retrieval, and structures
for accelerating inexact top K retrieval. A free text user query (top center)
is sent down to the indexes both directly and through a module for gener-
ating spelling-correction candidates. As noted in Chapter 3, the latter may
optionally be invoked only when the original query fails to retrieve enough
results. Retrieved documents (dark arrow) are passed to a scoring module
that computes scores based on machine-learned ranking (MLR), a technique
that builds on Section 6.1.2 (to be further developed in Section 15.4.1) for
scoring and ranking documents. Finally, these ranked documents are ren-
dered as a results page.

? Exercise 7.9 Explain how the postings intersection algorithm first introduced
in Section 1.3 can be adapted to find the smallest integer ω that contains all
query terms.

Exercise 7.10 Adapt this procedure to work when not all query terms are
present in a document.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

136 Computing scores in a complete search system

7.3 Vector space scoring and query operator interaction

We introduced the vector space model as a paradigm for free text queries. We
conclude this chapter by discussing how the vector space scoring model re-
lates to the query operators we have studied in earlier chapters. The relation-
ship should be viewed at two levels: in terms of the expressiveness of queries
that a sophisticated user may pose, and in terms of the index that supports
the evaluation of the various retrieval methods. In building a search engine,
we may opt to support multiple query operators for an end user. In doing so,
we need to understand what components of the index can be shared for ex-
ecuting various query operators, as well as how to handle user queries that
mix various query operators.

Vector space scoring supports so-called free text retrieval, in which a query
is specified as a set of words without any query operators connecting them. It
allows documents matching the query to be scored and thus ranked, unlike
the Boolean, wildcard, and phrase queries studied earlier. Classically, the in-
terpretation of such free text queries was that at least one of the query terms
be present in any retrieved document. However, more recently, web search
engines such as Google have popularized the notion that a set of terms typed
into their query boxes (thus on the face of it, a free text query) carries the se-
mantics of a conjunctive query that only retrieves documents containing all
or most query terms.

Boolean retrieval

Clearly, a vector space index can be used to answer Boolean queries, as long
as the weight of a term t in the document vector for d is nonzero whenever
t occurs in d. The reverse is not true; a Boolean index does not by default
maintain term weight information. There is no easy way of combining vector
space and Boolean queries from a user’s standpoint: Vector space queries are
fundamentally a form of evidence accumulation, where the presence of more
query terms in a document adds to the score of a document. Boolean retrie-
val, on the other hand, requires a user to specify a formula for selecting doc-
uments through the presence (or absence) of specific combinations of key-
words, without inducing any relative ordering among them. Mathematically,
it is in fact possible to invoke so-called p-norms to combine Boolean and vec-
tor space queries, but we know of no system that makes use of this fact.

Wildcard queries

Wildcard and vector space queries require different indexes, except at the
basic level, that both can be implemented using postings and a dictionary
(e.g., a dictionary of trigrams for wildcard queries). If a search engine allows

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

7.4 References and further reading 137

a user to specify a wildcard operator as part of a free text query (for instance,
the query rom* restaurant), we may interpret the wildcard component of the
query as spawning multiple terms in the vector space (in this example, rome

and roman are two such terms), all of which are added to the query vector.
The vector space query is then executed as usual, with matching documents
being scored and ranked; thus, a document containing both rome and roma

is likely to be scored higher than another containing only one of them. The
exact score ordering, of course, depends on the relative weights of each term
in matching documents.

Phrase queries

The representation of documents as vectors is fundamentally lossy: The rel-
ative order of terms in a document is lost in the encoding of a document as
a vector. Even if we were to try and somehow treat every biword as a term
(and thus an axis in the vector space), the weights on different axes are not
independent: For instance, the phrase German shepherd gets encoded in the
axis german shepherd, but immediately has a nonzero weight on the axes ger-

man and shepherd. Further, notions such as idf would have to be extended to
such biwords. Thus, an index built for vector space retrieval cannot, in gen-
eral, be used for phrase queries. Moreover, there is no way of demanding a
vector space score for a phrase query – we only know the relative weights of
each term in a document.

For the query german shepherd, we could use vector space retrieval to iden-
tify documents heavy in these two terms, with no way of prescribing that
they occur consecutively. Phrase retrieval, on the other hand, tells us of the
existence of the phrase german shepherd in a document, without any indica-
tion of the relative frequency or weight of this phrase. Although these two
retrieval paradigms (phrase and vector space) consequently have different
implementations in terms of indexes and retrieval algorithms, they can in
some cases be combined usefully, as in the three-step example of query pars-
ing in Section 7.2.3.

7.4 References and further reading

Heuristics for fast query processing with early termination are described
by Anh et al. (2001), Garcia et al. (2004), Anh and Moffat (2006b), Persin
et al. (1996). Cluster pruning is investigated by Singitham et al. (2004)
and by Chierichetti et al. (2007); see also Section 16.6 (page 343). Cham-
pion lists are described in Persin (1994) and (under the name top docs) intop docs

Brown (1995), and further developed in Brin and Page (1998), Long and
Suel (2003). Although these heuristics are well-suited to free text queries

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8

138 Computing scores in a complete search system

that can be viewed as vectors, they complicate phrase queries; see Anh
and Moffat (2006c) for an index structure that supports both weighted and
Boolean/phrase searches. Carmel et al. (2001), Clarke et al. (2000), and Song
et al. (2005) treat the use of query term proximity in assessing relevance. Pio-
neering work on learning of ranking functions was done by Fuhr (1989), Fuhr
and Pfeifer (1994), Cooper et al. (1994), Bartell (1994), Bartell et al. (1998), and
Cohen et al. (1998).

